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ABSTRACT 

Freeze-thaw cycles are common in cold regions and lead to frost heave and thaw 

weakening that influence pavement construction, maintenance, safety, and longevity. 

Because there is limited research about frost heave and thaw weakening of pavement 

foundation geomaterials, this research focused on the frost heave and thaw weakening 

performance of geomaterials stabilized with various combinations of fly ash, cement, fibers, 

and fibers with cement. 

The first objective of this research was to conduct laboratory tests according to ASTM 

D5918 to compare the effects of these stabilizers on frost susceptibility. The second objective 

of this research was to further associate laboratory results with in situ freeze-thaw 

performance of pavements with similar stabilized foundation geomaterials. 

For sandy lean clay, fly ash decreased frost susceptibility, and 15% fly ash performed 

better than 5%, 10%, and 20% fly ash. Cement decreased the frost susceptibility to very low 

to negligible levels for both sandy lean clay and silty sand with gravel. For silty sand with 

gravel, fibers alone did not significantly affect frost susceptibility, but fibers with cement 

performed better than the other stabilizers. Findings related to variations in compaction 

delay, cure time, setting time for chemical stabilizers, and cost are also reported. 

In situ stiffness testing conducted during frozen and after thaw conditions indicated that 

frozen pavements were stiffer than after thaw pavements. The trends in seasonal variation in 

stiffness were similar for pavement systems with all kinds of stabilization. Layers stabilized 

with cement and cement with fibers had the lowest stiffness changes after freeze-thaw cycles. 

These findings correlate with laboratory test results. 

This research provides guidance for selecting stabilizers to improve the frost 

susceptibility of pavement foundation materials. 
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CHAPTER 1. INTRODUCTION 

In climates like Iowa, pavement foundation materials are subject to freezing and thawing, 

which influence pavement systems associated with design, construction, and maintenance. 

This physical process is called the freeze-thaw cycle and results in frost heave and thaw 

weakening in pavement foundation layers. In earthwork engineering, freeze-thaw cycles are a 

common problem that influences the construction, safety, serviceability (e.g., user comfort or 

confidence), durability, and maintenance costs of pavements for pavement designers, 

transportation agencies, contractors, road users, and taxpayers.  

The research reported in this thesis is part of a larger project at the Boone County Test 

Sections site jointly conducted by the Center for Earthworks Engineering at Iowa State 

University and the Iowa Department of Transportation. This chapter describes the industry 

and technical problems with respect to the goals, objectives, and significance of this research. 

The final section of this chapter presents the organization of this thesis.  

TECHNICAL PROBLEM 

Non-uniform heave and changes in the stiffness of geomaterials are the most immediate 

problems caused by freeze-thaw cycles. Although research into the effects of freeze-thaw 

cycles has been conducted (Cassagrande et al. 1931; Johnson 2012; Beskow 1935; 

Chamberlain 1986), there is limited research about the effects of frost heave and thaw 

weakening on relationships between the wide range of geomaterials used in modern 

construction, moisture contents, and stabilizers (e.g., cement, polymer fibers, and 

geosynthetics). To provide effective pavement designs, changes in the in situ pavement 

foundation stiffness and heave rates during and after freeze-thaw cycles need to be better 

quantified. In this study, laboratory testing following ASTM D5918 provides a basis for 

comparing the behavior of various geomaterials and studying the effects of various 

stabilizers. Whether laboratory data can accurately predict pavement performance after 

freeze-thaw cycles is an extended technical problem because laboratory and in situ freeze-

thaw tests have not yet been correlated. 
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GOALS OF THE RESEARCH 

The first goal of this research was to compare the stabilization effects of various 

stabilizers for geomaterials based on frost susceptibility. The second goal of this research was 

to further associate laboratory results with the in situ freeze-thaw performance. 

OBJECTIVES 

The objectives of this research are to: 

• conduct laboratory freeze-thaw tests to evaluate the frost susceptibility of pavement 

foundation materials; 

• conduct laboratory freeze-thaw tests with pavement foundation materials stabilized 

with cement, fly ash, geo-fibers, and geotextiles and determine the stabilization 

effect; and 

• evaluate frost action of in situ pavement foundation. 

SIGNIFICANCE OF THE RESEARCH 

Improving the freeze-thaw performance of geomaterials is critically related to the 

stabilization methods applied. This research provides guidance for selecting stabilization 

methods in order to derive minimum frost susceptibility of various pavement foundation 

materials. 

The benefits to industry from this research are to improve the safety and durability of 

pavement systems, to reduce the costs of construction and maintenance, and to provide 

comfortable serviceability for road users.   

This research also compares laboratory freeze-thaw results to in situ freeze-thaw 

performance to begin to fill gaps in the limited research about predictions for field frost 

action based on laboratory tests. 

ORGANIZATION OF THE DOCUMENT 

Following this introductory chapter, this thesis is organized into six additional chapters. 

Chapter 2 reviews previous literature and provides background information for the study. 

Chapter 3 describes the laboratory and field test methods, and chapter 4 summarizes the 

laboratory and in situ properties that characterize the tested materials. Chapter 5 presents the 

results and analyses for the tests performed and discusses these findings. Chapter 6 
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summarizes the conclusions and outcomes derived from this research. The final chapter 

discusses how these conclusions can be applied in construction practice and offers 

suggestions for future research. Supporting materials are included as appendices that follow 

the list of works cited. 

KEY TERMS 

Freeze-thaw, frost susceptibility, stabilization, pavement foundations. 
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CHAPTER 2. BACKGROUND/LITERATURE REVEIW 

This chapter illustrates four topics: context for the research, freeze-thaw problems of 

geomaterials, frost-heave and thaw-weakening laboratory test, soil stabilization methods, and 

costs of stabilization methods. 

CONTEXT OF THE PROJECT 

This research is part of a larger project that was funded by the Iowa DOT and jointly 

carried out by the Iowa DOT, Boone County, and the Center for Earthworks Engineering at 

Iowa State University. This larger project applied new stabilization technologies such as 

cement, fly ash, geofibers, and mechanical compaction on the site. The field construction was 

conducted from May to July in 2012. The Boone County test sections are located near 

Boone, Iowa (Figure 1) where the average monthly temperatures range from -13 °C to 29 °C 

(Weather.com 2013).  

 
Figure 1. Location of the Boone County Test Sections site (Map data: Google 2013) 

The project site consists of 4.8 miles of roadway with thirteen roads oriented in the 

North-South direction (denoted as 1st St. to 13th St.) and three roads oriented in the East-
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West direction (denoted as South Ave., Central Ave., and North Ave.). Re-construction 

occurred on all roads except 13th St, which was paved with HMA earlier in 2012. 

Construction of test sections required removing the existing chip seal surface and subbase, 

and 6 to 12 in. of subgrade. The subgrade consisted primarily of wet soils classified as CL or 

A-6(5). Pore water pressure measurements from cone penetration tests (CPTs) indicated 

ground water elevations at depths of about 3 to 6 ft below original grade across the site, and 

at about 12 ft or greater near drainage features. 

Sixteen test sections were constructed on the North-South roads that used woven and 

non-woven geotextiles at subgrade/subbase interfaces; triaxial and biaxial geogrids at 

subgrade/subbase interfaces; 4 in. and 6 in. geocells in the subbase layer + non-woven 

geosynthetics at subgrade/subbase interfaces; portland cement (PC) and fly ash stabilization 

of subgrades; PC stabilization of recycled subbase; PC + fiber stabilization of recycled 

subbase with polypropylene fibers and monofilament-polypropylene fibers; mechanical 

stabilization (mixing subgrade with existing subbase); and high-energy impact compaction. 

Triaxial and biaxial geogrids were used at subgrade/subbase interfaces at select locations on 

East-West roads. Individual techs brief provide detailed information for each technology 

(http://ceer.iastate.edu/research/). 

All test sections except one were topped with a nominal 6 in. of modified subbase 

material (MSB) classified as GP-GM or A-1-a (7% fines content); the 6 in. geocell section 

required 7 in. of MSB. Crushed limestone was used in the MSB layer on all North-South 

roads, and a mixture of recycled concrete and recycled asphalt was used in the MSB layer on 

all East-West roads. Six test sections (North and South sections of 6th St., 7th St., and 9th 

St.) consisted of 6 in. of recycled subbase material classified as SM (USCS) or A-1-a 

(AASHTO) (14% fines content) between the subbase and subgrade layers (CEER 2013). 

Table 1 shows the tech summary on the test sections. Field and lab tests were conducted both 

during and after construction. These tests included light weight deflectometer (LWD); falling 

weight deflectometer (FWD); dynamic cone penetration (DCP) tests; soil classification; 

strength; compaction; and frost-heave and thaw-weakening tests. The research reported in 

this thesis focuses on the frost-heave and thaw-weakening lab tests of samples of stabilized 

subbase and subgrade materials from the site that simulate site construction.  
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Table 1. Stabilization technologies implemented at the Boone Test Sections site 

Street Segment Foundation Layer Profile (above natural subgrade) 

1st St. North 6 in. 
CLSB 12 in. compacted subgrade South 

2nd St. North 6 in. 
CLSB 12 in. mechanically stabilized subgrade South 

3rd St. 
North 2 in. 

CLSB 4 in. geocell reinforced MSB, NW geotextile 

South 1 in. 
CLSB 6 in. geocell reinforced MSB, NW geotextile 

4th St. 
North 6 in. 

CLSB NW geotextile 

South 6 in. 
CLSB woven geotextile 

5th St. 
North 6 in. 

CLSB triaxial geogrid 

South 6 in. 
CLSB biaxial geogrid 

6th St. 

North 6 in. 
CLSB 6 in. recycled subbase + 5% cement + 0.4% PP fibers 

South 6 in. 
CLSB 

Synthetic Subsurface Drainage Layer, 
6 in. recycled subbase + 5% cement + 0.4% MF fibers 

7th St. North 6 in. 
MSB 6 in. recycled subbase + 5% cement South 

8th St. North 6 in. 
CLSB 12 in. compacted subgrade South 

9th St. North 6 in. 
CLSB 6 in. reclaimed subbase South 

10th St. North 6 in. 
CLSB 

Compacted subgrade 
South Natural subgrade 

11th St. 
North 6 in. 

CLSB 12 in. 10% cement stabilized subgrade 

South 6 in. 
CLSB 12 in. 20% fly ash (Port Neal) stabilized subgrade 

12th St. 
North 6 in. 

CLSB 12 in. 15% fly ash (Ames) stabilized subgrade 

South 6 in. 
CLSB 

12 in. 10% fly ash (Muscatine and Port Neal) 
stabilized subgrade 

Legend: CLSB = crushed limestone subbase GP-GM or A-1-a (7% fines content), NW = non-woven. 
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FREEZE-THAW PERFORMANCE OF GEOMATERIALS 

Frost-heave results from ice forming within the soil during freezing conditions in the 

atmosphere. Continuous ice lens grows to expand the volume of voids potentially. The 

overlying pavement surface or upper layer reflects this action as cracks or bulges (Figure 2). 

Thaw-weakening results from ice melting within the soil. The stiffness of the soil decreases 

as the status of moisture changes from solid to liquid.  

 
Figure 2. Frost-heave pavement damage in Norway (Ystenes 2011) 

According to PavementInteractive.org (2006), the three elements necessary for ice lenses 

and thus frost heave are: frost susceptible soil (significant amount of fines); subfreezing 

temperatures (freezing temperatures must penetrate the soil and, in general, the thickness of 

an ice lens will be thicker with slower rates of freezing), water (must be available from the 

groundwater table, infiltration, an aquifer, or held within the voids of fine-grained soil). 

Remove any of the three conditions above and frost effects will be eliminated or at least 

minimized. If the three conditions occur uniformly, heaving will be uniform; otherwise, 

differential heaving will occur resulting in pavement cracking and roughness. Differential 
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heave is more likely to occur at locations such as: where subgrades change from clean not 

frost susceptible (NFS) sands to silty frost susceptible materials; abrupt transitions from cut 

to fill with groundwater close to the surface; where excavation exposes water-bearing strata; 

drains, culverts, etc., frequently result in abrupt differential heaving due to different backfill 

material or compaction and the fact that open buried pipes change the thermal conditions 

(i.e., remove heat resulting in more frozen soil) (Pavementinteractive.org 2006). Figure 3 

illustrates the seasonal pavement deflection changes as thaw-weakening of a portion of State 

Route 172 in Washington State.  

 

 
Figure 3. Typical pavement deflections illustrating seasonal pavement strength changes 

(Pavementinteractive.org 2006) 

Uniform frost heave causes little damage to pavement structures, but differential frost 

heave weakens pavement foundation layers and increases stress concentrations in the 

pavement layer. Three important factors influence frost heave, the size and percentage of 

voids in soil, the size of soil particles, and the water content of soil (Taber 1929). Water 

content correlates to the supply of available water that influences the amount of heave. The 

size and percentage of voids in soil determines the height to which water may be lifted above 

the water table by surface tension. The size distribution of soil particles controls the 

segregation of water during freezing. The U.S. Army Cold Regions Research Engineering 
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Laboratory (CRREL) and the U.S. Army Corps of Engineers (USACE) proposed a frost 

susceptibility classification system based on the grain size criteria (Figure 4). The grain size 

criteria is a commonly used method to determine the frost susceptibility, and Chamberlain 

(1981) confirmed that this method is a reliable and system. 

 
Figure 4. Frost susceptibility classification of soils (Joint Departments of the Army and 

Air Force 1985) 
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Under natural freezing conditions and with sufficient water supply one should expect 

considerable ice segregation in non-uniform soils containing more than 3% of grains smaller 

than 0.02 mm, and in very uniform soils containing more than 10 % smaller than 0.02 mm. 

No ice segregation was observed in soils containing less than 1% of grains smaller than 

0.02 mm, even if the groundwater level is as high as the frost line (Casagrande 1932). Brandl 

(2008) identified other factors that influence the freeze-thaw behavior of geomaterials: 

• grain size distribution; 

• mineral composition of the fine grains; 

• soil chemistry; 

• water content and degree of saturation; 

• density; 

• groundwater level; 

• availability of water (e.g., precipitation, seepage, groundwater); 

• temperature, hydraulic gradient, and chemistry of groundwater; 

• temperature conditions (e.g., magnitude and duration of freezing temperatures, 

temperature gradient); and  

• local climate, especially freeze-thaw cycles. 

Ice lens formation is the generally accepted cause for frost heave. The volume expansion 

of water limits the total amount of heave to around 5 cm in situ (Taber 1929). A 1,300 kPa 

pressure can be exerted by a growing ice lens, and the tensile strength reduces because of 

freeze-thaw. Higher water contents mean that ice lenses form more easily. Cassagrande 

(1931) agreed with Taber that a constant supply of water to the freezing front results in frost 

heave. Capillary stress is related to the pore sizes of soils and determines the degree of frost 

heave. The main factors that influence capillary stress are the soil particle size and the 

distance to water table. The degree of frost heave decreases for coarse silty clays as particle 

size increases, and it decreases for fine materials as particle size decreases (Beskow [1935] 

1991). A heat balance must be reached between the extraction of heat moving through frozen 

layers and heat moving through unfrozen layers. The ice lens will continue to grow if the 

heat balance is maintained. Penner (1966) performed freeze-thaw experiments and stated that 
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the relationship between the supply of water and the movement of heat determines the 

thicknesses of ice lenses.  

Janoo et al. (1997) studied on a well-graded sandy material which was used as pavement 

subbase layer. The laboratory frost heave tests presented low to medium frost susceptibility 

for unsaturated condition and high frost susceptibility for saturated condition. Four computer 

simulations were also developed. For both simulations with unsaturated condition, the frost 

penetration depth reached about halfway into the simulated layer and the average frost heave 

value was only around 10 to 15% of the values at saturated condition (Janoo et al. 1997) 

Lime stabilized Illinoian till and cement stabilized Ridgeville fine sandy loam were tested 

to determine the effects of freeze-thaw parameters on the durability of stabilized 

geomaterials. The evaluation factors were unconfined compressive strength change, moisture 

content change, and unit length change. Cooling rate turned out to be more important on 

affecting soil durability than the other three selected parameters: freezing temperature, length 

of freezing period, and thawing temperature. Geographic location, climatic conditions, and 

position of the stabilized layer should be three factors to determine the number of freeze-

thaw cycles for laboratory testing. 0.2 ̊F/hr. was the recommended cooling rate that simulates 

the field condition at Illinois area. This value was heavily detrimental to durability (Dempsey 

et al. 1973). Konrad (1988) stated that the segregation potential increases significantly with 

time in a freezing test in which the cooling rate is maintained constant. Chen et al. (1988) 

studied on the factors influencing frost heave. The factors included initial water content, 

initial dry unit weight, ground water level, plasticity index, and frost penetration rate. The 

test results are shown in Figure 5. From the figures, lower frost heave ratio can be resulted 

from higher frost penetration rate, lower initial moisture content, lower initial dry unit 

weight, higher ground water level, or lower plastic index. 
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Figure 5. Frost heave ratio (Ƞ) at various frost penetration rates (Vf) versus (A). Initial 

moisture content; (B). Initial dry unit weight; (C). Ground water level; (D). Plasticity 

index (Chen et al. 1988) 
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FROST-HEAVE AND THAW-WEAKENING LABORATORY TESTS 

Laboratory freeze-thaw tests include various tests for different testing materials and 

testing factors (i.e., durability, frost heave, stiffness changes). Table 2 summarizes the test 

methods that are related to laboratory freeze-thaw tests. 

Table 2. Test methods related to laboratory freeze-thaw tests 

Test Method Test  

ASTM C593 Standard Specification for Fly Ash and Other Pozzolans for Use 
with Lime 

ASTM D559 Standard Test Methods for Wetting and Drying Compacted Soil-
cement Mixtures 

ASTM D560 Standard Test Methods for Freezing and Thawing Compacted Soil-
Cement Mixtures 

ASTM D5918 Standard Test Methods for Frost Heave And Thaw Weakening 
Susceptibility Of Soils 

TEX-135-E Test Procedure For Freezing and Thawing Tests of Compacted 
Soil-cement Mixture 

 

Chamberlain (1981) reported that the five bases for the index tests that indicate the frost 

susceptibility of soils are: particle size characteristics void sizes, soil-water interaction, soil-

water-ice interaction, and frost heave. A five-day freezing test was developed with two 

freeze-thaw cycles and the California bearing ratio test (Chamberlain 1987). Silt and silty 

sand were tested (Henry 1990) based on the CRREL frost heave test, which was presented by 

Chamberlain and Carbee (1981). The test sample assembly is shown in Figure 6. The 

freezing chamber was divided into four parts that include the space for ice bath. Acrylic 

sheets were used to reduce heat loss and the freezer temperature was controlled manually. 

For the initial step, the top plate was set to -4 °C (25 °F) and the bottom plate was set to 1 °C 

(33.8 °F), so that the frost penetration rate can be kept at 1.27 cm/day (0.5 in./day).  

Two tests are used to understand typical frost-heave and thaw-weakening performance of 

geomaterials. ASTM D5918 “Standard Test Methods for Frost Heave and Thaw Weakening 

Susceptibility of Soils” is the index test for estimating the relative degree of frost 

susceptibility of geomaterials. California bearing ratio (CBR) values are calculated from 

penetration test results according to ASTM D1883 and reflect the mechanical strength of 

pavement foundation materials. 
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Figure 6. CRREL frost heave test sample assembly (Chamberlain and Carbee 1981) 

Konrad (1988) defined the freezing test with constant temperature boundary conditions as 

“step-freezing” test and the freezing in which the temperature at each end of the sample is 

changed at a specified rate as “ramped-freezing” test. The total heave and heave rate from 

these two types of freezing tests were different because of the freezing path differences. The 

step-freezing tests resulted in frost heave curves generally concave downwards while 

ramped-freezing presented frost heave curves concave upwards.  

However, Svec (1989) stated two drawbacks of the five-day test: the thermal boundary 

conditions cannot reflect the real ground freezing conditions; the frost heave rate changes as 

the temperature gradient changes during a CRREL frost-heave test. Svec (1989) and Penner 

(1967) both calculated the field temperature gradient at southeastern Ontario area, which was 
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smaller than the value used for laboratory frost-heave test. Svec (1989) also described 

temperature gradient influence based on ice-lens formation and rhythmic ice-lensing theory. 

Therefore, Svec (1989) reported another modified idea to determine the maximum frost 

heave potential. The modified test equipment was developed by Penner and Eldred (1985) 

and is shown in Figure 7. 

 
Figure 7. Modified frost heave test equipment (Penner and Eldred 1985) 

Johnson (2012) constructed laboratory equipment for conducting freeze-thaw tests 

according to ASTM D5918. There are four major steps of this test: remold the samples, fully 

saturate the samples, put the samples in the temperature-controlled chamber for freeze-thaw 

cycles, and perform California bearing ratio tests (Figure 8).  
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Figure 8. Laboratory freeze-thaw test steps showing (1) sample remolding; (2) fully 

saturation; (3) freeze-thaw process; (4) CBR test  

Six-inch samples are fully saturated before they are put into the freezer, then they are 

connected to Mariotte water supplies that maintain the water pressure. Two disks that 

connect to the water bath are applied to control the temperatures at the top and bottom of the 

sample. Lasers are set above the samples to measure the heave values during tests. For each 

sample, six thermocouples are inserted into the six 1-inch layers to monitor the temperatures 

during the entire freeze-thaw process. A computer program called “DasyLab” records the 

outputs of thermocouples, pressure transducers, and lasers (Figure 1). The entire freeze-thaw 

process takes around 120 hours, and includes two 8-hour freezing processes. 
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Figure 9. Idealized view of the temperature control chamber (Johnson 2012) 

After freeze-thaw testing, CBR tests are conducted on the samples, and those values are 

compared to the CBR values of unsaturated control samples. This test method is used to 

evaluate the potential strength of geomaterials, and it is intended for but not limited to 

evaluating the strength of cohesive materials having maximum particle sizes less than 3/4 in. 

(19 mm) (ASTM D1883-05). By comparing the results from the after freeze-thaw testing and 

the control testing, the stiffness changes can be determined as the thaw-weakening 

performance. 

Frost susceptibility classifications can be determined by comparing heave rates or CBR 

after thaw values with ASTM D5918 classifications (Table 3). Because the second 8-hr 

heave rates are always larger than the first ones, the second 8-hr heave rates are used to be 

compared. An exception is the recycled portland cement concrete (RPCC) subbase from US-

30, that it heaves more during the first freeze-thaw cycle than the second (Figure 10) 

(Johnson 2012). 
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Table 3. ASTM D5918 frost susceptibility classification 

Frost susceptibility 
classification 

2nd 8-hr heave rate 
(mm/d) 

CBR after thaw  
(%) 

Negligible <1 >20 
Very low 1 to 2 20 to 15 

Low 2 to 4 15 to 10 
Medium 4 to 8 10 to 5 

High 8 to 16 5 to 2 
Very High >16 <2 

 
Figure 10. IA US-30 RPCC heave value with time (Johnson 2012) 

SOIL STABLIZATION METHODS 

Pavement foundation stabilizers are commonly used for improving pavement freeze-thaw 

performance. The following sections discuss basic mechanisms and performance of the 

stabilizers that were installed at the Boone County Test Sections site and investigated in this 

study: cement, fly ash, polypropylene fibers, and geosynthetics. 

Cement 

Cement is one of the most widely applied chemical stabilizers in pavement foundation 

construction to improve geomaterial behaviors during freezing and thawing. Cement hydrates 
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and sets after it is mixed with soil because pore water reacts with cement to form calcium 

silicate and aluminate hydrates. These cemented products effectively decrease the amount of 

pore water; bond soil grains; and improve soil stability, frost heave behavior, and thaw 

weakening. Texas Department of Transportation (TxDOT) provided test procedure for 

freezing and thawing tests of compacted soil-cement mixtures. This method determines the 

frost heave values of cement stabilized soil during freeze-thaw cycles. 

Non-stabilized loess is among the most frost susceptible geomaterials. Johnson (2012) 

reported that the average heave rate of cement-stabilized western Iowa loess was 0.0 mm/d, 

and seven of eight cement-stabilized samples had CBR values over 100%. Johnson (2012) 

also stated that both frost susceptibility and thaw weakening are negligible after cement 

stabilization because cement-stabilized materials can absorb large amounts of water without 

increasing frost susceptibility (Table 4). Therefore, the effect of cement stabilization to 

control the frost action of loess material is considerable. 

Table 4. Frost susceptibility of cement stabilized western Iowa loess 

Material Cement  
content (%) 

Initial 
moisture 
content 

(%) 

Frost-heave  
susceptibility 

rating 

Thaw-weakening 
susceptibility 

rating 

Loess 

0.0 17.5 Very high Very high 
3.0 13.0 Negligible Negligible 
3.0 20.0 Negligible Negligible 
5.0 20.0 Negligible Negligible 
7.0 20.0 Negligible Negligible 
9.0 13.0 Negligible Negligible 
9.0 20.0 Negligible Negligible 
11.0 20.0 Negligible Negligible 
13.0 22.0 Negligible Negligible 

 
For the frost susceptibility of stabilized (lime and portland cement) soils, a minimum of 

3% lime or cement is required to reduce frost heave by about 50%. In cohesionless soils, 

about 3 to 8% cement is required to reduce frost heave. For frost susceptible gravel soils, 2% 

cement is required to change it to a non-frost susceptible material. For cement treated soils, 

the tensile strength of the materials decreased with increasing freeze-thaw cycles. The tensile 



www.manaraa.com

 20 

strength did not reduce after 12 freeze-thaw cycles, when 15% cement was added to the soil. 

(Janoo et al., 1997).  

Shrinkage cracking, water ingress, structural deterioration, and pavement roughness may 

occur because of the addition of excessive cement (Crane et al. 2006, George 1968, and 

Norling 1973). Guthrie et al. (2007) conducted laboratory freeze thaw tests to evaluate the 

effect of reduced cement contents on frost heave. A silty soil (ML USC classification) was 

stabilized with three contents of cement: 2.0%, 3.5%, and 5.0%. Cement contents 

corresponding to 7-day unconfined compression strength 400 psi (3.5%) and 600 psi (5.0%) 

reduced the frost heave effectively. Comparing the frost heaves (Figure 11), weights gained 

(Figure 12), and final moisture contents (Figure 13) to the non-stabilized controlled test leads 

to the following conclusions: 

• Insufficient cement addition might lead to greater frost heave than non-stabilized silty 

soil, and suction and permeability properties can explain this behavior; 

• Significant water ingress occurs whatever how much cement was added into the soil 

samples; 

• Excessive cement might cause pavement damage like shrinkage cracking (Guthrie 

2007). 

 
Figure 11. Frost heave versus cement content (Guthrie et al. 2007) 
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Figure 12. Weight gained versus cement content (Guthrie et al. 2007) 

 
Figure 13. Final moisture content versus cement content (Guthrie et al. 2007) 

Fly ash 

Fly ash (FA) is a residual product of coal combustion, and the main components are 

silicon dioxide and calcium oxide. Nowadays FA is collected by recycling equipment instead 

of being released into atmosphere. ASTM C593 provides the standard specification for fly 

ash and other Pozzolans for use with lime. The methods for sample mixing, curing, and 

saturating can be referred to this standard. 

Johnson (2012) compared the frost heave and thaw weakening performance of FA-

stabilized loess samples and non-stabilized loess samples and reported that there is not 
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obvious improvement. The frost susceptibility of these samples keeps at a high level, but 

generally decreases as the FA content increases. All the stabilized samples heaved, and some 

heaved even more than non-stabilized samples. The thaw weakening susceptibility of the 

stabilized samples ranged from negligible to high and post CBR values range from 5.0% to 

25.5% as the FA content varies from 10% to 22% (Table 5) (Johnson 2012).  

Table 5. Frost susceptibility of FA stabilized western Iowa loess 

Material Fly ash  
content (%) 

Initial 
moisture 
content 

(%) 

Frost-heave  
susceptibility 

rating 

Thaw-
weakening 

susceptibility 
rating 

Loess 

10.0 10.0 High High 
10.0 19.0 Very high High 
15.0 19.0 high Medium 
20.0 22.0 High Negligible 

 
Six different mixtures of fly ash and recycled base materials were cured for 7 days as 

normally practiced in pavement construction (Cetin et al., 2010). These specimens were 

subjected to resilient modulus (an estimate of soil’s modulus of elasticity and a measure of 

soil’s stiffness) tests following a group of freeze-thaw cycles. The specimens either gain or 

lose 3-12% of their initial resilient modulus after four cycles, and then the summary resilient 

modulus ratio (SMR) (the ratio of summary resilient modulus after n freeze-thaw cycles to the 

initial summary resilient modulus) starts to decrease indicating the freeze-thaw effects. The 

highest decreasing rate of SMR is between the fourth and eighth cycle, and the specimens 

lose 31-67% of the initial moduli after twelve freeze-thaw cycles. Rosa (2006) also reported 

a 20-66% reduction in SMR of various coarse and fine-grained soils. Such high changes in 

SMR are attributed to the frost susceptibility of mixtures due to their high gravel content and 

nonplastic nature. For cohesive soils, the effect of freeze-thaw was negligible when the stress 

at 1% strain in the unconfined compression test (Su1%) is less than 8 psi (55 kPa), and the 

effect of freeze-thaw increases as the Su1% increases (Lee et al. 1995). 

Though fly ash improves the soil stiffness, fly ash stabilized soil also causes tensile 

strength reduction and shrink-swell potential changes (Cokca 2001). Solanki et al. (2013) 

stated that Class C fly ash increased the freeze-thaw durability of CL-ML, CL, and CH 

materials based on the unconfined compressive strength and resilient modulus. However, the 
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improvement of fly ash on controlling the effect of freeze-thaw cycles is less than hydrated 

lime and cement kiln dust. Bin-Shafique et al. (2011) studied on the effect of freezing-

thawing cycles on performance of fly ash stabilized expansive soil subbases. Class C fly ash 

and artificial fibers were used to stabilize two types of high plasticity clay (CH). Unconfined 

compression tests, tensile tests, and freeze-thaw tests were conducted under both good and 

poor drainage conditions. Good drainage was better than poor drainage to reduce the 

influence of freeze-thaw cycles to soil strength. A maximum of 50% strength reduction was 

measured for 20% fly ash stabilized samples after 24 freeze-thaw cycles. The plasticity and 

swell potential also increased significantly after the test. The test results were shown in 

Figure 14, Figure 15, and Figure 16. 

 
Figure 14. Unconfined compressive strength of fly ash and fiber stabilized clay (Bin-

Shafique et al. 2011) 
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Figure 15. Tensile strength of fly ash and fiber stabilized clay (Bin-Shafique et al. 2011) 

 
Figure 16. Vertical swell of fly ash and fiber stabilized clay (Bin-Shafique et al. 2011) 
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Geofiber and other geosynthetics 

The two advantages of applying fibers in soil stabilization are: easy to install and mix 

with soils; potential weakening planes are limited to parallel to oriented reinforcement (Tang 

et al. 2007). It is predicted that geofibers can help to improve the freeze-thaw performance of 

pavement foundation materials. For example, Gray and Ohashi (1983) tested beach sand 

stabilized with geofibers and concluded that geofibers increase the shear strength of clean 

sand, but they did not conduct freeze-thaw tests. Collins (2011) recommended that samples 

treated with geofibers should be subjected to lab freeze-thaw conditions to evaluate the 

effects of this stabilization method. However, there is little research regarding freeze-thaw 

effects on geofiber stabilized materials. 

Several researchers have studied using geofibers as a stabilization technology for 

geomaterials and reported that geofibers are effective in some conditions. Hazirbaba et al. 

(2007) studied fine-grained soil and reported that the CBR value at optimum moisture 

content without stabilizers was 31, and the optimum geofiber content, which corresponds to 

the largest CBR value, appears to be about 0.5%. Addition of 0.5% geofiber at optimum 

moisture content of 11% increased the CBR value from 31 to 62 and got much higher values 

at larger penetrations. Viswanadham (2009) stated that geofiber stabilization is a very 

effective method for controlling soil deformation. Use of the fibers decreased freeze-thaw 

volumetric changes on the order of 40% as compared with the untreated soil. The soil-fiber 

mixtures provided up to 40% improvement in composite stiffness than untreated soil, as 

evaluated through the cyclic load test following 10 freeze-thaw cycles (Hoover et al., 1982). 

The addition of 3% of fibers increases the unconfined compression strength of soil. For 

polypropylene fibers and steel fibers, the increases are 220% and 13% respectively. By 

adding 3% polypropylene fibers, the sample height decreases up to 70%, whereas for the 

same content of steel fibers, the sample height decreases up to about 20% (Figure 17) 

(Ghazavi and Roustaie 2009). Bin-Shafique et al. (2011) reported that the addition of fiber 

into fly ash stabilized clay samples improved the freeze-thaw performance of the mixtures. A 

maximum of 50% reduction in unconfined compressive strength loss and 45% reduction of 

tensile strength loss were determined by adding 1% fibers. The addition of fiber also reduced 
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the swelling potential of the stabilized soil. The test results can be referred to Figure 14, 

Figure 15, and Figure 16. 

 
Figure 17. Height changes of polypropylene and steel fibers stabilized clayey samples 

(Ghazavi, and Roustaie 2009) 
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Henry (1990) reported that a silty sand sample heaved more than a layered silty sand-silt 

sample and after 25 hours heave rates were approximately equal. It was reported that 

Fibertex 300 and Typar 3401 better reduced the frost heave rate than other geotextiles. The 

greater hydrophobicity of Typar 3401 resulted in the better effect for controlling frost heave 

(Allen et al. 1983). Fibertex 400 and Typar 3401 were used to stabilize silt and silty sand 

samples. One layer of either the Fibertex or Typar reduce frost heave rate by 40 to 50%, 

while two layers of Fibertex reduced frost heave by about 50 to 55%. The three reasons that 

these two geotextiles are able to reduce frost heave are: larger pore sizes of the geotextiles, 

the surface properties of the fibers, and the unsaturated hydraulic conductivity of the 

geotextiles (Henry 1990). 

Zaimoglu (2010) conducted unconfined compression tests and freeze-thaw durability 

tests for polypropylene fibers stabilized MH materials. The fiber contents ranged from 0.25% 

to 2%. As shown in Figure 18, the addition of 2% polypropylene fibers increased the 

unconfined compressive strength from 311 kPa to 1335 kPa. However, the stresses at the first 

3% strains of all the non-stabilized and stabilized samples were similar. In the durability test, 

12 freeze-thaw cycles were subjected to the samples. The addition of 0.75% polypropylene 

fiber reduced the mass loss from 40% to 15%, and the samples with other contents of fiber 

lost around 20% mass after the freeze-thaw cycles (Figure 19). According to the statement 

from Chamberlain et al. (1990) that surface strength cannot be significantly affected by mass 

losses around 10-15% after 12 freeze-thaw cycles, fiber stabilized silt was effectively durable 

under freeze-thaw periods. 
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Figure 18. After freezing-thawing stress-strain curves of non-stabilized and fiber 

stabilized silt (Zaimoglu 2010) 

 
Figure 19. Mass loss of fiber stabilized silt after freezing-thawing (Zaimoglu 2010) 

In order to evaluate the strength and mechanical behavior of polypropylene fiber 

stabilized clay and clay-cement mixtures, Tang et al. (2007) conducted unconfined 

compression tests, direct shear tests, and scanning electron microscopy (SEM) tests on these 

materials. The soil symbol was CL (lean clay) according to the uniformed soil classification 

system (USCS). The fiber contents ranged from 0.05% to 0.25% (0.05%, 0.15%, and 0.25%) 

and the cement contents ranged from 0% to 8% (0%, 5%, and 8%). The general conclusion 

from this study was the addition of fiber into clay and clay-cement mixtures improved the 

unconfined compressive strength, shear strength, and axial strain at failure. The test results 

indicated that the strength of non-stabilized was slightly improved by fiber only, and the 
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addition of cement caused the significant improvement in strength. The test results are 

presented in Figure 20 and Figure 21. 

 
Figure 20. Unconfined compressive strength versus fiber content (Tang et al. 2007) 

 
Figure 21. Shear strength parameters versus fiber content including (a). Cohesion 

versus fiber content; (b). Internal friction angle versus fiber content (Tang et al. 2007) 
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COSTS OF STABILIZATION METHODS 

The cost for stabilization is an important factor in earthwork engineering. Figure 22 

shows the range of bid prices for the Central Iowa Expo project for 13 methods of 

stabilization materials and installations from the Center for Earthworks Engineering Research 

(CEER) at Iowa State University.  

 
Figure 22. Cost for stabilization material and installation (White et. al 2012) 

A lot of engineers and researchers had studied on comparing the costs of different 

stabilization methods and the stabilization effect. The major stabilization effects that are 

considered include soil shear strength, permeability, plastic and liquid limits, and density. 

Johnson (2012) reported that cement is more cost effective than fly ash based on the 

unconfined compressive strength (Table 6). Freeze-thaw performance was not a significant 
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role in evaluating the stabilization effects. However, freeze-thaw is an important factor 

influencing the durability, serviceability, and safety of pavement system, and must be 

considered when comparing the costs and effects of different stabilization methods. 

Table 6. Cost efficiency of cement and fly ash (Johnson 2012) 

UCS 
(kPa) 

Average 
cement 
$/yd2 

Approximate  
cement  

content (%) 

Average  
fly ash 
$/yd2 

Approximate 
fly ash 

content (%) 

345 — — — — 

517 — — 5.11 10 

690 — — 6.05 15 

861 — — 7.23 20 

1034 3.31 3 — — 

2069 4.90 5 — — 

2758 6.50 7 — — 

3448 8.09 9 — — 

4137 9.69 11 — — 

4827 11.29 13 — — 

5516 — — — — 
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CHAPTER 3. METHODS 

The main goal of this research is to evaluate the frost heave performance of pavement 

foundation materials during freeze-thaw cycles. The methods used in this study were selected 

to address these objectives:  

• to conduct laboratory freeze-thaw tests to evaluate the frost susceptibility of 

pavement foundation materials;  

• to conduct laboratory freeze-thaw tests with pavement foundation materials stabilized 

with cement, fly ash, geo-fibers, and geotextiles and determine the stabilization 

effect; and  

• to evaluate frost action of in situ pavement foundation.  

To address the objectives of this study, the following laboratory tests were conducted: 

soil classification and index tests, compaction tests, strength tests, and frost-heave and thaw-

weakening tests. Falling weight deflectometer (FWD) tests and dynamic cone penetrometer 

(DCP) tests were conducted at the Boone County Test Sections site. Information about 

laboratory tests is presented first, followed by information about the field tests. 

LABORATORY TESTS 

Frost-heave and thaw-weakening results can be influenced by the soil types and 

compactions methods.  Soil classification and index tests were conducted to derive the soil 

types and basic geotechnical properties. Compaction tests were conducted to guide the soil 

preparation design for frost-heave testing. Strength tests were conducted to determine the 

strength variation at different conditions, such as no freeze-thaw and after thawing. Frost-

heave and thaw-weakening test were the major part for this research to evaluate the frost 

susceptibility. Table 7 summarizes the laboratory tests conducted in this study. 
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Table 7. Laboratory test methods 

 

Soil Classification and Index Tests 

Laboratory sieve tests and hydrometer tests were conducted for particle size analyses 

according to ASTM D422-63, ASTM C117-04, and ASTM C136-06 (Figure 23). Atterberg 

limit tests were conducted according to ASTM D4318-05 to determine the liquid limits (LL), 

plastic limits (PL), and plasticity index (PI) (Figure 23).  

Test Method Test 
Soil classification and index tests 

ASTM D422-63 Standard Test Method for Particle-Size Analysis of Soils 

ASTM C117-04 Standard Test Method for Materials Finer than 75-µm (No. 200) 
Sieve in Mineral Aggregates by Washing 

ASTM C136-06 Standard Test Method for Sieve Analysis of Fine and Coarse 
Aggregates 

ASTM D4318-05 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity 
Index of Soils 

ASTM D2487-06 Standard Practice for Classification of Soils for Engineering 
Purposes (Unified Soil Classification System) 

ASTM C127-07 Standard Test Method for Density, Relative Density (Specific 
Gravity), and Absorption of Coarse Aggregate 

Compaction tests 

ASTM D698-07 Standard Test Methods for Laboratory Compaction Characteristics of 
Soil using Standard Effort 

O'Flaherty et al. 
1963 2-in. x 2-in. Iowa State Compaction Method 

Strength tests 

ASTM D1883-05 Standard Test Method for CBR (California Bearing Ratio) of 
Laboratory-Compacted Soils 

O'Flaherty et al. 
1963 2-in. x 2-in. Compressive Strength Tests 

Frost heave and thaw weakening test 

ASTM D5918-96 Standard Test Methods for Frost Heave and Thaw Weakening 
Susceptibility of Soils 
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Figure 23. Soil classification tests showing (a) Sieve test; (b) Hydrometer test; (c) 

Atterberg limits test. 

Compaction Tests 

Standard Proctor compaction tests were conducted according to ASTM D698-07 (Figure 

24). The relationship between moisture content and dry unit weight determines the specific 

moisture content for optimum dry unit weight. This specific moisture content was used to 

batch and prepare the soil materials for later frost-heave and thaw-weakening tests.  
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Figure 24. Standard Proctor compaction test 

The 2-in. x 2-in. tests were conducted according to O’Flaherty et al. (1963). The results 

from these tests can be used to determine the specific moisture content and stabilizer content 

for peak compressive strength. Soils were moisture conditioned at selected target values and 

then stabilizers were added based on dry soil weight and then mixed with the soil. 2268 g (5 

lb.) hammer was used to compact the soils by dropping it from a 305 mm (12 in.) height 

(Figure 25). The number of blow was calculated according to the target density. Compacted 

soil samples were sealed with plastic wrap and aluminum foil to keep the moisture, and then 

cured at 38 °C (100 °F) for 7 days.   
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Figure 25. 2-in. x 2-in. compaction test 

Strength Tests 

Unconfined compressive strength tests were performed to determine the failure stresses 

of the 2-in. x 2-in. samples. O’Flaherty et al. (1963) also provided the procedure of the 

unconfined compressive test (Figure 26). The applied loading rate was 0.05 in/min. ASTM 

D2166 provide the standard test method for unconfined compressive strength of cohesive 

soil. 
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Figure 26. 2-in. x 2-in unconfined compressive strength test 

California bearing ratio (CBR) tests were conducted according to ASTM D1883-05 to 

evaluate the potential strength of pavement foundation materials. The CBR test device is 

shown in Figure 27. The test is performed by measuring the pressure required to penetrate a 

soil sample with a piston. The measured pressure is then divided by the pressure required to 

achieve an equal penetration on a standard crushed rock material. The treating conditions for 

the CBR tests samples were the same to the frost-heave and thaw-weakening test. 
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Figure 27. CBR test device 

Frost-heave and Thaw-weakening Test 

ASTM D5918-96 “Standard Test Methods for Frost Heave and Thaw Weakening 

Susceptibility of Soils” is the index test for estimating the relative degree of frost-

susceptibility of soils used in pavement systems. Johnson (2012) constructed the laboratory 

equipment used in this study for conducting freeze-thaw tests. Six-inch samples are fully 

saturated before they are put into the freezer, then they are connected to Mariotte water 

supplies that maintain the water pressure. Two disks that connect to the water bath are 

applied to control the temperatures at the top and bottom. Lasers are set above the samples to 

measure the heave values during testing, and the computer program records the outputs of 

thermocouples, pressure transducers, and lasers. The entire freeze-thaw process takes around 

120 hours, and includes two 8-hour freezing cycles.  

Prepare the sample materials 
The following is the procedure for preparing the materials that will be used as samples.  



www.manaraa.com

 39 

1. Use geomaterials passing 3/4 in. (1.91 cm) sieve.  

2. Measure the moisture content and calculate the difference to the target moisture.  

3. Adjust the moisture content. 

A. Add required amount of water if the target moisture content is larger than the 

measured value; or 

B. Oven dry the materials (100 ̊F) to reduce the moisture content if the target 

value is less than the measured value.  

4. Add stabilizers according to the test design. Mixing time depends on achieving a 

uniform distribution of the stabilizer. 

A. Incorporate chemical stabilizers (e.g., cement, fly ash) with a laboratory soil 

mixer (Figure 28). 

B. Incorporate geofibers may by hand.  

5. Seal the mixed materials in zip sample bags for later use. 

6. Record compaction delay time for chemically stabilized soils. 

 
Figure 28. Soil sample mixer 
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Remold and compact the samples 
The sample consists of six acrylic rings, each with a hole for a thermocouple and 

alignment grooves on the top and bottom rings; two acrylic spacer disks; a rubber membrane; 

a split cylinder mold; four clamps; and a top collar (Figure 29). 

 
Figure 29. Sample assembly showing (a). Sample setup; (b). Six acrylic rings 

1. Record the weight of the six acrylic rings, top and bottom acrylic spacer disks, and 

rubber membranes.  

2. Place a spacer disk with a rubber membrane wrapped around it into the bottom of one 

side of the mold.  

3. Put the acrylic rings into the mold and vertically align the thermocouple holes and 

grooves.  

4. Place the other side of the cylinder mold around the assembled rings. 

5. Place the clamps around the mold and top with collar. 

6. Pull up the rubber membrane and stretch it over the top edge of the assembly until no 

ripple appears on the rubber.  
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7. Compact the mixed materials prepared in zip bags with five layers. Each compacted 

layer should have the same height of 1.2 in. (3.05 cm).  

8. Use the standard Proctor rammer to compact layer for forty blows per layer. This 

number is determined by the dry unit weight.  

9. Split the assembly and take out the sample after compaction.  

10. Use straight edges to flatten the top surface and record the total weight of the sample, 

membrane, acrylic rings, and two spacer disks (Figure 30).  

11. Seal the sample with a zip sample bag. Cure the sample according to the design 

curing level (e.g., time and temperature). 

 
Figure 30. Remolded sample 

Saturating samples 
In order to eject the air between soil particles, full saturation is required. A water supply 

is connected to the sample through the inlet and base plate with a porous stone (Figure 31). A 

glass tube inside the water supply controls the water head through lifting it up or down.  

1. Tightly close the clamp on the outlet after dewatering.  
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2. Place the bottom of the glass tube at the same height of the bottom layer of the 

sample.  

3. Open the valve and leave it for one hour.  

4. Repeat the same procedure for the other five layers above.  

5. Put the glass tube down to the sixth layer after the top layer is saturated.  

6. Leave the sample for a minimum of 8 hours. 

 
Figure 31. Saturation assembly showing (a) Mariotte tube; (b) Pressure transducer; (c) 

Bubble tube; (d) Base plate with porous stone 

Conducting freeze-thaw tests 
1. Disassemble the saturation set and dig shallow holes on the sample through the 

thermocouple holes and grooves.  
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2. Put the fully saturated sample into the freezer on the aluminum side of the 

temperature control end plate (Figure 32) and reconnect the saturation assembly to the 

sample.   

3. Place the acrylic side of the temperature control end plate (Figure 32) at the top of 

sample and then put two 2268 g (5 lb.) steel disks as surcharge weight above the 

plate.  

 
Figure 32. Temperature control end plates 

4. Turn on the temperature control baths (Figure 33) to cool down the 50% ethylene 

glycol-water. 
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Figure 33. Water bath 

5. Connect the pressure transducers to the data receiver. 

6. Insert the thermocouples into the holes through the grooves.  

7. Set up the laser displacement transducer above the sample assembly within required 

height range (Figure 34). 
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Figure 34. Freeze-thaw test assembly in the freezer 

8. Run the computer program as an initial test to determine if every index meets the 

requirement (Figure 35). 

 
Figure 35. Computer program (DasyLab) interface 
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9. Close the freezer and rerun the program. 

10. Leave the program running for 120 hours (5 days) (Table 8), and then take out the 

sample for strength testing. 

Table 8. Freezing schedule based on computer program settings 

Day Elapsed Time, 
hr 

Top Plate  
Temperature,  

°C 

Bottom Plate 
Temperature,  

°C 
Comments 

1 0 3 3 24-hr conditioning 

2 24 3 3 First 8-hr freeze 
32 12 0 Freeze to bottom 

3 48 12 3 First thaw 
64 3 3 — 

4 72 3 3 Second 8-hr freeze 
80 12 0 Freeze to bottom 

5 96 12 3 Second thaw 
112 to 120 3 3 — 

 

11. Run California bearing ratio (CBR) test on the after-thaw sample (Figure 36). 

 
Figure 36. After thawing CBR test 

Dial gauge
(Deformation)

Loading cell
(Stress)

Surcharge
(10 lb.)
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12. Cut the sample into six layers along with the six acrylic rings (Figure 37). Take part 

each layer of material to measure the moisture contents. 

 
Figure 37. Cut the sample into six layers 

FIELD TESTS 

To evaluate frost action of in situ pavement foundations and to compare the freeze-thaw 

performance with laboratory findings, field tests were conducted at the Boone County Test 

Section site. Falling weight deflectometer (FWD) tests and dynamic cone penetrometer 

(DCP) tests were conducted at the Boone County Test Sections site (Table 9).  

Table 9. Field test methods 

Test Method Test 

ASTM D6951-03 Standard Test Method for Use of the Dynamic Cone Penetrometer in 
Shallow Pavement Applications 

FHWA 2000 Falling weight deflectometer (FWD) 

 

Dynamic Cone Penetrometer 

Dynamic cone penetrometer (DCP) tests were conducted according to ASTM D6851-03 

to determine the field CBR values of pavement foundation systems (Figure 38). An 8 kg 

(17.64 lb.) hammer was dropped from a height of 575 mm (22.64 in.).  
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Equation 1 uses the penetration index in mm/blow to determine CBR values as follows 

 CBR =  292
PI1.12 (1) 

where  

CBR = California bearing ratio and  

PI = penetration index (mm/blow). 

 
Figure 38. In situ DCP test 

Falling Weight Deflectometer  

Falling weight deflectometer (FWD) tests were performed according to FHWA 2000 to 

evaluate the stiffness-related parameters of the pavement structures. A Kuab FWD setup 

(Figure 39) with a 300 mm (11.81 in.) diameter loading plate was used to directly test the 

pavement foundation layers with various loads. A load cell recorded actual applied forces 

and seismometers recorded deflections.  
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Elastic modulus values were determined by using the outputs from FWD tests based on 

Equation (2). 

 ESB−LWD =  (1−η2)σ0r 
Do

 × F (2) 

where  

E = elastic modulus (psi),  

D0 = measured deflection under the plate (in.),  

η = Poisson’s ratio (assumed as 0.4),  

σ0 = applied stress (psi),  

r = radius of the plate (in.),  

F = shape factor depending on stress distribution (assumed as 8/3) (Vennapusa and White, 

2009).  

 
Figure 39. Kuab FWD Setup 
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CHAPTER 4. MATERIALS 

This chapter describes the two kinds of materials, geomaterials and stabilizers, used in 

this research This research is part of a larger project, the Boone County Test Section project 

located at the Iowa Expo site that was funded by the Iowa DOT and jointly carried out by the 

Iowa DOT, Boone County, and the Center for Earthworks Engineering at Iowa State 

University. Table 10 shows the geomaterials and stabilization methods for laboratory tests 

according to the construction. 

Table 10. Test materials and stabilization methods 

Materials Stabilization 
Recycled subbase No 

Subgrade No 
Subgrade 5% Ames fly ash 
Subgrade 10% Ames fly ash 
Subgrade 15% Ames fly ash 
Subgrade 20% Ames fly ash 
subgrade 5% Muscatine fly ash 
subgrade 10% Muscatine fly ash 
subgrade 15% Muscatine fly ash 
subgrade 20% Muscatine fly ash 
Subgrade 5% Port Neal fly ash 
Subgrade 10% Port Neal fly ash 
Subgrade 15% Port Neal fly ash 
Subgrade 20% Port Neal fly ash 

Recycled subbase 2.5% cement 
Recycled subbase 5.0% cement 
Recycled subbase 2.5% cement 
Recycled subbase 5.0% cement 
Recycled subbase 7.5% cement 
Recycled subbase 10.0% cement 
Recycled subbase 0.2% PP 
Recycled subbase 0.4% PP 
Recycled subbase 0.6% PP 
Recycled subbase 0.2% MF 
Recycled subbase 0.4% MF 
Recycled subbase 0.6% MF 
Recycled subbase 0.2% PP + 3.75% cement 
Recycled subbase 0.4% PP + 3.75% cement 
Recycled subbase 0.6% PP + 3.75% cement 
Recycled subbase 0.2% MF+ 3.75% cement 
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Table 10. Test materials and stabilization methods (continued) 

Materials Stabilization 
Recycled subbase 0.4% MF+ 3.75% cement 
Recycled subbase 0.6% MF+ 3.75% cement 

Subgrade 5% cement 
Subgrade 10% cement 

Western Iowa Loess 12% fly ash 90 days curing 
Western Iowa Loess 12% fly ash 180 days curing 

GEOMATERIALS 

Three types of geomaterials were tested for this research. With the exception of Western 

Iowa loess, the materials for this research are from the Iowa Expo site (Table 11).  

Table 11. Material types and source locations 

Material type Source location 

Recycled subbase Boone County Test Section, Iowa 

Subgrade Boone County Test Section, Iowa 

Loess Pottawattamie County, Iowa 

Three kinds of standard tests to determine soil index properties of the three materials, soil 

classification and index tests, compaction tests, and strength tests (Table 12). 

Table 12. Lab tests methods 

Test Method Test 
Soil classification and index tests 

ASTM D422-63 Standard Test Method for Particle-Size Analysis of Soils 

ASTM C117-04 Standard Test Method for Materials Finer than 75-µm (No. 200) 
Sieve in Mineral Aggregates by Washing 

ASTM C136-06 Standard Test Method for Sieve Analysis of Fine and Coarse 
Aggregates 

ASTM D4318-05 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity 
Index of Soils 

ASTM D2487-06 Standard Practice for Classification of Soils for Engineering 
Purposes (Unified Soil Classification System) 

Compaction tests 

ASTM D698-07 Standard Test Methods for Laboratory Compaction Characteristics of 
Soil using Standard Effort 

O'Flaherty et al. 
1963 2-in. x 2-in. Iowa State Compaction Method 
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Table 12. Lab tests methods (continued) 

 

Boone County Test Sections Recycled Subbase 

 
Figure 40. Recycled subbase from the Boone County Test Sections site 

Recycled subbase was collected from the Boone County Test Sections site (Figure 40). 

The soil index properties tests were conducted (Table 13). It was classified as silty sand with 

gravel (SM) based on USCS classification and A-1-a based on AASHTO classification. 

Figure 41 shows the grain size distribution curve of the material. Atterberg limits test 

Test Method Test 
Strength tests 

ASTM D1883-05 Standard Test Method for CBR (California Bearing Ratio) of 
Laboratory-Compacted Soils 

O'Flaherty et al. 
1963 2-in. x 2-in. Compressive Strength Tests 

Frost heave and thaw weakening test 

ASTM D5918-96 Standard Test Methods for Frost Heave and Thaw Weakening 
Susceptibility of Soils 
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resulted in non-plastic. The optimum moisture content and maximum dry unit weight from 

standard Proctor test are 7.9% and 19.6 kN/m3 (Figure 42). 

Table 13. Recycled subbase index properties 

Parameter Recycled Subbase 
Specific Gravity 2.5 (Assumed) 

Gravel Content (%) (>4.75 mm) 37.2 
Sand Content (%) (4.75 – 75 μm) 48.4 
Silt content (%) (75 μm – 2 μm) 6.3 

Clay content (%) (<2 μm) 8.1 
D10 (mm) 0.02 

D30 (mm) 0.45 

D60 (mm) 4 

Coefficient of Uniformity, Cu 160 

Coefficient of Curvature, Cc 2 
Liquid Limit, LL (%) 

NP 
Plasticity Index, PI (%) 

AASHTO A-1-a 
USCS Group Symbol SM 
USCS Group Name Silty sand with gravel 

Maximum Dry Unit Weight, γd,max (kN/m3) 19.62 

Optimum Moisture Content, wopt (%) 7.9 
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Figure 41. Recycled subbase grain size distribution 

 
Figure 42. Recycled subbase standard Proctor curve 
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Boone County Test Sections Subgrade 

Natural subgrade was collected from the Boone County Test Sections site (Figure 43). 

The soil index properties tests were conducted (Table 14). Figure 44 shows the grain size 

distribution of the material. It was classified as sandy lean clay (CL) based on USCS 

classification and A-6(5) based on AASHTO classification. Atterberg limits test resulted in 

33 as the liquid limit and 18 as the plastic limit. The optimum moisture content and 

maximum dry unit weight from standard Proctor test are 13.5% and 18.2 kN/m3 (Figure 45).  

 
Figure 43. Subgrade from the Boone County Test Sections site 

Table 14. Subgrade soil index properties 

Parameter Subgrade 
Specific Gravity 2.7 (Assumed) 

Gravel Content (%) (>4.75 mm) 5.3 
Sand Content (%) (4.75 – 75 μm) 39.7 

Silt + Clay content (%) (75 μm – 2 μm) 21.4 
Clay content (%) (<12 μm) 33.6 

D10 (mm) - 
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Table 14. Subgrade soil index properties (continued) 

Parameter Subgrade 
D30 (mm) 0.01 

D60 (mm) 0.12 

Coefficient of Uniformity, Cu - 

Coefficient of Curvature, Cc - 
Liquid Limit, LL (%) 33 

Plasticity Index, PI (%) 15 
AASHTO A-6(5) 

USCS Group Symbol CL 
USCS Group Name Sandy lean clay 

Maximum Dry Unit Weight, γd,max (kN/m3) 18.15 

Optimum Moisture Content, wopt (%) 13.5 

 

 
Figure 44. Subgrade grain size distribution 
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Figure 45. Subgrade standard Proctor curve 
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Western Iowa Loess 

 
Figure 46. Western Iowa loess (WIL) 

Loess material were collected from western Iowa local deposits (Figure 46). In this 

research, western Iowa loess (WIL) was used to determine the influence of various curing 

time to the effect of controlling freeze-thaw performance. Table 15 shows the soil index 

properties of non-stabilized and FA stabilized western Iowa loess. Both of the soils were 

classified as silt (ML) according to USCS classification. Figure 47 and Figure 48 show the 

grain size distribution of the soils. Figure 49 and Figure 50 show the standard Proctor results 

between dry unit weight and moisture content. 

Table 15. Soil index properties of non-stabilized and FA stabilized western Iowa loess 

Parameter Non-stabilized WIL FA stabilized WIL 
Specific Gravity, Gs  2.72  2.68 
Gravel Content (%) (>4.75 mm) 0 0 
Sand Content (%) (4.75 – 75 μm) 0 3.0 
Silt content (%) (75 μm – 2 μm) 82.0 82.0 
Clay content (%) (<2 μm) 18.0 15.0 
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Table 15. Soil index properties of non-stabilized and FA stabilized western Iowa 

loess (continued) 

Parameter Non-stabilized WIL FA stabilized WIL 
Coefficient of Uniformity, Cu - - 

Coefficient of Curvature, Cc - - 

Liquid Limit, LL (%) 29 29 
Plasticity Index, PI (%) 6 6 
AASHTO A-4(0) A-4(2) 
USCS Group Symbol ML ML 
USCS Group Name Silt Silt 
Maximum Dry Unit Weight, γd,max (kN/m3) 16.2 16.9 

Optimum Moisture Content, wopt (%) 16.7 16.7 

 

 
Figure 47. Non-stabilized WIL grain size distribution (Johnson 2012) 
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Figure 48. FA stabilized WIL grain size distribution (Johnson 2012) 

 
Figure 49. Non-stabilized WIL standard Proctor curve (Johnson 2012) 
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Figure 50. FA stabilized WIL standard Proctor curve (Johnson 2012) 

STABILIZERS 

Pavement foundation stabilizers are commonly used for improving pavement freeze-thaw 

performance. The following sections discuss basic mechanisms and performance of the 

stabilizers that were installed at the Boone County Test Sections site and investigated in this 

study: fly ash, cement, and geofabrics. 

Fly ash 

Fly ash (FA) (Figure 51) is a residual product of coal combustion, and the main 

components are silicon dioxide and calcium oxide. Johnson (2012) compared the frost-heave 

and thaw-weakening performance of FA-stabilized loess samples and non-stabilized loess 

samples and reported that there is no obvious improvement. The frost susceptibility of 

stabilized samples remained at a high level, but generally decreased as the FA content 

increases. All the stabilized samples heaved, and some heaved even more than non-stabilized 

samples. The thaw-weakening susceptibility of the stabilized samples ranged from negligible 

to high and post CBR values range from 5.0% to 25.5% as the FA content varies from 10% 

to 22% (Johnson 2012).  
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Figure 51. Three kinds of fly ash 

In this project, freeze-thaw laboratory tests were conducted on FA stabilized Boone 

County Test Sections site geomaterials to determine if FA stabilization effectively improves 

the freeze-thaw performance of these materials. Furthermore, FA stabilized loess samples 

with longer cure period were tested for frost susceptibility. X-ray fluorescence (XRF) tests 

were conducted to analyze the chemical compositions of these three FA (  
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Table 16). X-ray diffraction (XRD) tests were also conducted by Iowa State University to 

characterize crystalline materials. Figure 53, Figure 54, and Figure 55 show the XRD test 

results of the three FA. Setting times of the three FA were tested to determine the hydration 

time (Figure 52). The time recorded at the first available resistance and 4.5 tsf was treated as 

the initial and final set time. The influences of different composition contents of different FA 

to stabilization effect were analyzed according to the XRF and XRD results.  
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Table 16. Composition and setting time of three types of FA 

Composition 
(%) 

Port Neal 
FA 

Ames 
FA 

Muscatine 
FA 

SiO2 38.90 33.80 36.50 
Al2O3 17.30 17.00 20.70 
Fe2O3 5.03 5.36 7.08 
SO3 2.25 2.53 2.14 
CaO 25.30 26.40 22.90 
MgO 5.03 6.15 4.84 
Na2O 1.57 2.56 1.59 
K2O 0.58 0.62 0.40 
P2O5 0.59 1.32 1.39 
TiO2 1.52 1.57 1.57 
SrO 0.36 0.34 0.39 
BaO 0.66 0.78 0.80 

Initial sett time (min) 2.75 4.25 7.00 
Final set time (min) 6.00 18.5 166.00 

 
Figure 52. Set time plots of Ames, Muscatine, and Port Neal FA 
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Figure 53. XRD test result of Ames FA 

 
Figure 54. XRD test result of Muscatine FA 
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Figure 55. XRD test result of Port Neal FA 

Portland cement 

 
Figure 56. Type II Portland cement 

Cement (Figure 56) is one of the most widely applied chemical stabilizers in pavement 

foundation construction to improve geomaterial behaviors during freezing and thawing (Joint 
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Department of the Army and Air Force 1985). Cement hydrates and sets after it is mixed 

with soil because pore water reacts with cement to form calcium silicate and aluminate 

hydrates. These cemented products effectively decrease the amount of pore water; bond soil 

grains; and improve soil stability, frost-heave behavior, and thaw-weakening.  

Non-stabilized loess is among the most frost susceptible geomaterials. Johnson (2012) 

reported that the average heave rate of cement-stabilized Iowa loess was 0 mm/d, and seven 

of eight cement-stabilized samples had CBR values over 100%. Johnson (2012) also stated 

that both frost susceptibility and thaw-weakening are negligible after cement stabilization 

because cement-stabilized materials can absorb large amounts of water without increasing 

frost susceptibility.  

This project extended Johnson’s work by studying cement stabilized geomaterials from 

the Boone County Test Sections site to evaluate how cement stabilization affects the 

engineering properties of these materials. Type II Portland cement (Table 17) was used to 

stabilize the geomaterials. This type of cement is commonly used for general construction 

that is exposed to moderate sulfate attack (Wikipedia, 2013), such in the western United 

States where concrete is in contact with soils and ground water with high sulfur contents.  

Table 17. Composition of type II portland cement 

Composition C3S C2S C3A C4AF MgO SO3 CaO Ignition loss 
Content 51.0% 24.0% 6.0% 11.0% 2.9% 2.5% 1.0% 0.8% 
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Geofibers 

  
Figure 57. Black polypropylene geofibers (PP) 

Two types of geofibers, polypropylene geofibers (Figure 57) and monofilament fibers 

(Figure 58), were used to evaluate the stabilization effects on improving freeze-thaw 

performance. 
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Figure 58. White monofilament fibers (MF) 

Several researchers have studied using geo-fibers as a stabilization technology for 

geomaterials, but there is limited research regarding freeze-thaw effects on geofiber 

stabilized materials. Hazirbaba et al. (2007) studied native soil and reported that the CBR 

value at optimum moisture content without stabilizers was 31, and the optimum geofiber 

content, which corresponds to the largest CBR value, appears to be about 0.5%. Addition of 

0.5% geofiber at optimum moisture content of 11% increased the CBR value from 31 to 62 

and got much higher values at larger penetrations. Viswanadham (2009) stated that geofiber 

stabilization is a very effective method for controlling soil deformation. It is predicted that 

geofibers can help to improve the freeze-thaw performance of pavement foundation 

materials. For example, Gray and Ohashi (1983) tested beach sand stabilized with geo-fibers 

and concluded that geo-fibers increase the shear strength of clean sand, but they did not 

conduct freeze-thaw tests. Collins (2011) recommended that samples treated with geo-fibers 

should be subjected to lab freeze-thaw conditions to evaluate the effects of this stabilization 

method. 
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CHAPTER 5. RESULTS AND DISCUSSION 

This chapter includes the data from the laboratory and field tests and an overview of the 

major points organized by frost-heave and thaw-weakening tests and in situ tests. All tests 

were conducted according to the methods illustrated in Chapter 3 on the materials presented 

in Chapter 4. 

FROST-HEAVE AND THAW-WEAKENING TESTS 

Freeze-thaw and California bearing ration (CBR) tests were conducted on a total of 35 

non-stabilized and stabilized geomaterials. Freeze-thaw tests with two freeze-thaw cycles 

were conducted to determine the heave performance and water movement in the test layers. 

In most cases, frost heaves during the second cycle were greater and faster and were used to 

evaluate the frost susceptibility of the materials. When the frost heave from the first cycle 

was greater, that was used as the governed heave rate. Heave values and heave rates can be 

determined from frost heave time plots. Moisture contents were measured at each layer after 

the freeze-thaw tests to show trends of moisture content with depth. CBR values are 

calculated from stress penetrations at the depth of 0.2 in. CBR tests were performed before 

and after freeze-thaw testing to determine the weakening performance of the materials.  

The following sections show frost-heave time plots, the after-thawing moisture contents 

profiles, and the frost susceptibilities based on heave rates and CBRs for the 35 materials. 

Non-stabilized subgrade and recycled subbase 

One set of control frost-heave and thaw-weakening test was performed. Two samples of 

non-stabilized recycled subbase (samples 1 and 2) and two samples of non-stabilized 

subgrade (samples 3 and 4) were tested. Figure 59 shows the frost heave time plots of these 

four samples. The slopes that represent the heave rates of non-stabilized subbase samples 

were similar. The governed second heave rate was 15.63 mm/day. The non-stabilized 

subgrade samples heaved less and more slowly than the subbase samples. The governed 

second heave rate was 11.43 mm/day. However, the first heave rates of the four samples 

were close, which was around 9.50 mm/day. 
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Figure 59. Non-stabilized subbase (samples 1 and 2) and subgrade (samples 3 and 4) 

frost heave time plots 
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For non-stabilized recycled subbase and subgrade samples the moisture content profiles 

show the moisture contents decreased as the depth increased. Figure 60 shows the moisture 

content profiles of the post-test samples. 

 
Figure 60. Non-stabilized subbase (samples 1 and 2) and subgrade (samples 3 and 4) 

moisture content profiles 

The CBR value of non-stabilized recycled subbase after freeze-thaw testing was larger 

than the one without freeze-thaw test. The frost susceptibility of non-stabilized recycles 

subbase was classified as medium to high level. Table 18 summarizes the frost-heave and 

thaw-weakening test results on non-stabilized recycled subbase material. 
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Table 18. Non-stabilized subbase frost-heave and thaw-weakening test results 

1st frost-heave rate (mm/day) 9.61 
2nd frost-heave rate (mm/day) 15.63 
CBR after freeze-thaw test (%) 8.8 

CBR before freeze-thaw test (%) 4.6 
Frost susceptibility based on heave High 
Frost susceptibility based on CBR Medium 

The CBR value of non-stabilized subgrade after freeze-thaw test was less than the one 

without freeze-thaw test. The frost susceptibility of this material was classified as high to 

very high level. Table 19 summarizes the frost-heave and thaw-weakening test results on 

non-stabilized subgrade material. 

Table 19. Non-stabilized subgrade frost-heave and thaw-weakening test results 

1st Frost-heave rate (mm/day) 9.44 
2nd Frost-heave rate (mm/day) 11.43 
CBR after freeze-thaw test (%) 1.4 

CBR before freeze-thaw test (%) 2.8 
Frost susceptibility based on heave High 
Frost susceptibility based on CBR Very high 

 

Subgrade stabilized with fly ash 

Ten sets of fly ash-stabilized subgrade samples with different percentages of three kinds 

of fly ash (FA), Ames, Muscatine, and Port Neal FA, were constructed. Table 20 shows the 

sources, percentages in the sample mixtures, the ASTM C 618 class of the FA, and the 

chemical components of the FA for the 10 sets of samples. 

Table 20. Fly ash percentages and active components contents 

Fly ash source Percent (%) 
SiO2 

content  
(%) 

Al2O3 
content  

(%) 

CaO 
content  

(%) 

Initial set  
time (min.) 

Final set 
time (min.) 

Ames 5 

33.8 17.0 26.4 2.75 6.00 Ames 10 
Ames 15 
Ames 20 

Muscatine 5 36.5 20.7 22.9 4.25 18.5 Muscatine 10 
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Table 20. Fly ash percentages and active components contents (continued) 

Fly ash source Percent (%) 
SiO2 

content  
(%) 

Al2O3 
content  

(%) 

CaO 
content  

(%) 

Initial set  
time (min.) 

Final set 
time (min.) 

Port Neal 5 

38.9 17.3 25.3 7.00 166.00 Port Neal 10 
Port Neal 15 
Port Neal 20 

Two subgrade samples stabilized with 5% Ames fly ash were tested. The peak heave 

values of the samples were similar. The governed second heave rate calculated from the 

slopes was 8.40 mm/day. Figure 61 shows the frost heave time plots of these two samples. 

The heave rate was less than the non-stabilized subgrade. 

 
Figure 61. 5% Ames FA stabilized subgrade frost heave time plots 

0 20 40 60 80 100 120

H
ea

ve
 (m

m
)

0

5

10

15

20

25

Te
m

pe
ra

tu
re

 (°
C

)

-12

-8

-4

0

4

8

12

Sample Heave
Temperature at Top of Sample
Temperature at Bottom of Sample

0 20 40 60 80 100 120

H
ea

ve
 (m

m
)

0

5

10

15

20

25

Te
m

pe
ra

tu
re

 (°
C

)

-12

-8

-4

0

4

8

12

Sample 1

Sample 2



www.manaraa.com

 75 

For the 5% Ames FA stabilized subgrade the moisture content profiles show that the 

moisture contents decreased as the depth increased. Figure 62 shows the moisture content 

profiles of the post-test samples. 

 
Figure 62. 5% Ames FA stabilized subgrade moisture content profiles 

For 5% Ames FA stabilized subgrade, the CBR value after freeze-thaw test was less than 

the one without freeze-thaw test. The frost susceptibility of this material was classified as 

medium to high level. Table 21 summarizes the frost-heave and thaw-weakening test results 

on 5% Ames FA stabilized subgrade material. 

Table 21. 5% Ames FA stabilized subgrade frost-heave and thaw-weakening test results 

1st Frost-heave rate (mm/day) 4.51 
2nd Frost-heave rate (mm/day) 8.40 
CBR after freeze-thaw test (%) 6.6 

CBR before freeze-thaw test (%) 15.5 
Frost susceptibility based on heave High 
Frost susceptibility based on CBR Medium 

Two subgrade samples stabilized with 10% Ames fly ash were tested. The peak heave 

values of the samples were similar. The governed second heave rate calculated from the 

slopes was 6.60 mm/day. Figure 63 shows the frost heave time plots of these two samples. 

The heave rate was less than the non-stabilized and 5% Ames FA stabilized subgrade. 

Moisture Content (%)

0 5 10 15 20 25

D
ep

th
 (m

m
)

0.0

25.4

50.8

76.2

101.6

127.0

152.4

Moisture Content (%)

0 5 10 15 20 25

0.0

25.4

50.8

76.2

101.6

127.0

152.4

Sample 1 Sample 2



www.manaraa.com

 76 

 
Figure 63. 10% Ames FA stabilized subgrade frost heave time plots 

For 10% Ames FA stabilized subgrade the moisture content profiles show the moisture 

contents decreased as the depth increased. Figure 64 shows the moisture content profiles of 

the post-test samples. 
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Figure 64. 10% Ames fly ash stabilized subgrade moisture content profiles 

For 10% Ames FA stabilized subgrade, the CBR value after freeze-thaw test was less 

than the one without freeze-thaw test. The frost susceptibility of this material was classified 

as medium level. Table 22 summarizes the frost-heave and thaw-weakening test results on 

10% Ames FA stabilized subgrade material. 

Table 22. 10% Ames fly ash stabilized subgrade frost-heave and thaw-weakening test 

results 

1st Frost-heave rate (mm/day) 3.60 
2nd Frost-heave rate (mm/day) 6.60 
CBR after freeze-thaw test (%) 9.6 

CBR before freeze-thaw test (%) 44.6 
Frost susceptibility based on heave Medium 
Frost susceptibility based on CBR Medium 

 

Two subgrade samples stabilized with 15% Ames fly ash were tested. The peak heave 

values of the samples were similar. The governed second heave rate calculated from the 

slopes was 6.87 mm/day. Figure 65 shows the frost heave time plots of these two samples. 

The heave rate was less than the non-stabilized, 5% Ames FA stabilized, and 10% Ames FA 

stabilized subgrade. 
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Figure 65. 15% Ames FA stabilized subgrade frost heave time plots 

For both of the 15% Ames FA samples the moisture content profiles show that the 

moisture content decreased as the depth increased. Figure 66 shows the moisture content 

profiles of both post-test samples. 
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Figure 66. 15% Ames FA stabilized subgrade moisture content profiles 

For 15% Ames FA stabilized subgrade, the CBR value after freeze-thaw test was less 

than the one without freeze-thaw test. The frost susceptibility of this material was classified 

as medium to negligible level. Table 23 summarizes the frost-heave and thaw-weakening test 

results on 15% Ames FA stabilized subgrade material. 

Table 23. 15% Ames FA stabilized subgrade frost-heave and thaw-weakening test 

results 

1st Frost-heave rate (mm/day) 2.92 
2nd Frost-heave rate (mm/day) 6.87 
CBR after freeze-thaw test (%) 20.1 

CBR before freeze-thaw test (%) 73.2 
Frost susceptibility based on heave Medium 
Frost susceptibility based on CBR Negligible 

Two subgrade samples stabilized with 20% Ames fly ash were tested. The peak heave 

values of the samples were similar. The governed second heave rate calculated from the 

slopes was 7.85 mm/day. Figure 67 shows the frost heave time plots of these two samples. 

The heave rate was less than the non-stabilized and 5% Ames FA stabilized subgrade, but 

larger than the 10% and 15% Ames FA stabilized subgrade. 
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Figure 67. 20% Ames FA stabilized subgrade frost heave time plots 

For 20% Ames FA stabilized subgrade the moisture content profiles show the moisture 

contents decreased as the depth increased. Figure 68 shows the moisture content profiles of 

the post-test samples. 
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Figure 68. 20% Ames FA stabilized subgrade moisture content profiles 

For 20% Ames FA stabilized subgrade, the CBR value after freeze-thaw testing was less 

than the one without freeze-thaw test. The frost susceptibility of this material was classified 

as medium to low level. Table 24 summarizes the frost-heave and thaw-weakening test 

results on 20% Ames FA stabilized subgrade material. 

Table 24. 20% Ames FA stabilized subgrade frost-heave and thaw-weakening test 

results 

1st Frost-heave rate (mm/day) 3.61 
2nd Frost-heave rate (mm/day) 7.85 
CBR after freeze-thaw test (%) 10.2 

CBR before freeze-thaw test (%) 18.2 
Frost susceptibility based on heave Medium 
Frost susceptibility based on CBR Low 

Two subgrade samples stabilized with 5% Muscatine fly ash were tested. The peak heave 

values of the samples were similar. The governed second heave rate calculated from the 

slopes was 9.88 mm/day. Figure 69 shows the frost heave time plots of these two samples. 

The heave rate was less than the non-stabilized subgrade. 
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Figure 69. 5% Muscatine FA stabilized subgrade frost heave time plots 

For 5% Muscatine FA stabilized subgrade the moisture content profiles show the 

moisture contents decreased as the depth increased. Figure 70 shows the moisture content 

profiles of the post-test samples. 
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Figure 70. 5% Muscatine FA stabilized subgrade moisture content profiles 

For 5% Muscatine FA stabilized subgrade, the CBR value after freeze-thaw test was less 

than the one without freeze-thaw test. The frost susceptibility of this material was classified 

as high level. Table 25 summarizes the frost-heave and thaw-weakening test results on 5% 

Muscatine FA stabilized subgrade material. 

Table 25. 5% Muscatine FA stabilized subgrade frost-heave and thaw-weakening test 

results 

1st Frost-heave rate (mm/day) 4.57 
2nd Frost-heave rate (mm/day) 9.88 
CBR after freeze-thaw test (%) 2.9 

CBR before freeze-thaw test (%) — 
Frost susceptibility based on heave High 
Frost susceptibility based on CBR High 

Two subgrade samples stabilized with 10% Muscatine fly ash were tested. The peak 

heave values of the samples were similar. The governed second heave rate calculated from 

the slopes was 12.32 mm/day. Figure 71 shows the frost heave time plots of these two 

samples. The heave rate was less than the non-stabilized subgrade, but larger than the 5% 

Muscatine FA stabilized subgrade. 
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Figure 71. 10% Muscatine FA stabilized subgrade frost heave time plots 

For 10% Muscatine FA stabilized subgrade the moisture content profiles show the 

moisture contents decreased as the depth increased. Figure 72 shows the moisture content 

profiles of the post-test samples. 
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Figure 72. 10% Muscatine FA stabilized subgrade moisture content profiles 

For 10% Muscatine FA stabilized subgrade, the CBR value after freeze-thaw test was less 

than the one without freeze-thaw test. The frost susceptibility of this material was classified 

as high level. Table 26 summarizes the frost-heave and thaw-weakening test results on 10% 

Muscatine FA stabilized subgrade material. 

Table 26. 10% Muscatine FA stabilized subgrade frost-heave and thaw-weakening test 

results 

1st Frost-heave rate (mm/day) 4.86 
2nd Frost-heave rate (mm/day) 12.32 
CBR after freeze-thaw test (%) 2.6 

CBR before freeze-thaw test (%) — 
Frost susceptibility based on heave High 
Frost susceptibility based on CBR High 

Two subgrade samples stabilized with 5% Port Neal fly ash were tested. The peak heave 

values of the samples were similar. The governed second heave rate calculated from the 

slopes was 6.61 mm/day. Figure 73 shows the frost heave time plots of these two samples. 

The heave rate was less than the non-stabilized subgrade. 
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Figure 73. 5% Port Neal FA stabilized subgrade frost heave time plots 

For 5% Port Neal FA stabilized subgrade the moisture content profiles show the moisture 

contents decreased as the depth increased. Figure 74 shows the moisture content profiles of 

the post-test samples. 
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Figure 74. 5% Port Neal FA stabilized subgrade moisture content profiles 

For 5% Port Neal FA stabilized subgrade, the CBR value after freeze-thaw test was less 

than the one without freeze-thaw test. The frost susceptibility of this material was classified 

as medium level. Table 27 summarizes the frost-heave and thaw-weakening test results on 

5% Port Neal FA stabilized subgrade material. 

Table 27. 5% Port Neal FA stabilized subgrade frost-heave and thaw-weakening test 

results 

1st Frost-heave rate (mm/day) 2.50 
2nd Frost-heave rate (mm/day)  6.61 
CBR after freeze-thaw test (%) 5.7 

CBR before freeze-thaw test (%) — 
Frost susceptibility based on heave Medium 
Frost susceptibility based on CBR Medium 

Two subgrade samples stabilized with 10% Port Neal fly ash were tested. The peak heave 

values of the samples were similar. The governed second heave rate calculated from the 

slopes was 8.21 mm/day. Figure 75 shows the frost heave time plots of these two samples. 

The heave rate was less than the non-stabilized subgrade, but larger than the 5% Port Neal 

FA stabilized subgrade. 
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Figure 75. 10% Port Neal FA stabilized subgrade frost heave time plots 

For 10% Port Neal FA stabilized subgrade the moisture content profiles show the 

moisture contents decreased as the depth increased. Figure 76 shows the moisture content 

profiles of the post-test samples. 
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Figure 76. 10% Port Neal FA stabilized subgrade moisture content profiles 

For 10% Port Neal FA stabilized subgrade, the CBR value after freeze-thaw test was less 

than the one without freeze-thaw test. The frost susceptibility of this material was classified 

as Low to high level. Table 28 summarizes the frost-heave and thaw-weakening test results 

on 10% Port Neal FA stabilized subgrade material. 

Table 28. 10% Port Neal FA stabilized subgrade frost-heave and thaw-weakening test 

results 

1st Frost-heave rate (mm/day) 4.04 
2nd Frost-heave rate (mm/day) 8.21 
CBR after freeze-thaw test (%) 11.2 

CBR before freeze-thaw test (%) 15.0 
Frost susceptibility based on heave High 
Frost susceptibility based on CBR Low 

Two subgrade samples stabilized with 15% Port Neal fly ash were tested. The peak heave 

values of the samples were similar. The governed second heave rate calculated from the 

slopes was 1.96 mm/day. Figure 77 shows the frost heave time plots of these two samples. 

The heave rate was less than the non-stabilized, 5%, and 10% Port Neal FA stabilized 

subgrade. 
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Figure 77. 15% Port Neal FA stabilized subgrade frost heave time plots 

For 15% Port Neal FA stabilized subgrade the moisture content profiles show the 

moisture contents decreased as the depth increased. Figure 78 shows the moisture content 

profiles of the post-test samples. 
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Figure 78. 15% Port Neal FA stabilized subgrade moisture content profiles 

For 15% Port Neal FA stabilized subgrade, the CBR value after freeze-thaw test was less 

than the one without freeze-thaw test. The frost susceptibility of this material was classified 

as very low level. Table 29 summarizes the frost-heave and thaw-weakening test results on 

15% Port Neal FA stabilized subgrade material. 

Table 29. 15% Port Neal FA stabilized subgrade frost-heave and thaw-weakening test 

results 

1st Frost-heave rate (mm/day) 0.56 
2nd Frost-heave rate (mm/day) 1.96 
CBR after freeze-thaw test (%) 16.9 

CBR before freeze-thaw test (%) 25.8 
Frost susceptibility based on heave Very low 
Frost susceptibility based on CBR Very low 

Two subgrade samples stabilized with 20% Port Neal fly ash were tested. The peak heave 

values of the samples were similar. The governed second heave rate calculated from the 

slopes was 3.16 mm/day. Figure 79 shows the frost heave time plots of these two samples. 

The heave rate was less than the non-stabilized, 5%, and 10% stabilized subgrade, but larger 

than the 15% Port Neal FA stabilized subgrade. 
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Figure 79. 20% Port Neal FA stabilized subgrade frost heave time plots 

For 20% Port Neal FA stabilized subgrade the moisture content profiles show the 

moisture contents decreased as the depth increased. Figure 80 shows the moisture content 

profiles of the post-test samples. 
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Figure 80. 20% Port Neal FA stabilized subgrade moisture content profiles 

For 20% Port Neal FA stabilized subgrade, the CBR value after freeze-thaw test was less 

than the one without freeze-thaw test. The frost susceptibility of this material was classified 

as low to very low level. Table 30 summarizes the frost-heave and thaw-weakening test 

results on 20% Port Neal FA stabilized subgrade material. 

Table 30. 20% Port Neal FA stabilized subgrade frost-heave and thaw-weakening test 

results 

1st Frost-heave rate (mm/day) 1.24 
2nd Frost-heave rate (mm/day) 3.16 
CBR after freeze-thaw test (%) 17.9 

CBR before freeze-thaw test (%) — 
Frost susceptibility based on heave Low 
Frost susceptibility based on CBR Very low 

 

Subgrade stabilized with cement 

One subgrade sample stabilized with 5% cement was tested. The peak heave value of the 

sample was 0.25 mm. The governed second heave rate calculated from the slopes was too 

small to measure. Figure 81 shows the frost heave time plots of the sample. The heave rate 

was less than the non-stabilized subgrade. 
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Figure 81. 5% cement stabilized subgrade frost heave time plots 

For 5% cement stabilized subgrade the moisture content profiles show that there was not 

obvious change of moisture contents from top to bottom layer. Figure 82 shows the moisture 

content profiles of the post-test sample. 

 
Figure 82. 5% cement stabilized subgrade moisture content profiles 

For 5% cement stabilized subgrade, the CBR value after freeze-thaw test was larger than 

the one without freeze-thaw test. The frost susceptibility of this material was classified as 
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negligible level. Table 31 summarizes the frost-heave and thaw-weakening test results on 5% 

cement stabilized subgrade material. 

Table 31. 5% cement stabilized subgrade frost-heave and thaw-weakening test results 

1st Frost-heave rate (mm/day) <1.00 
2nd Frost-heave rate (mm/day) <1.00 
CBR after freeze-thaw test (%) 165.8 

CBR before freeze-thaw test (%) 37.3 
Frost susceptibility based on heave Negligible 
Frost susceptibility based on CBR Negligible 

One subgrade sample stabilized with 10% cement was tested. The peak heave value of 

the sample was 0.36 mm. The governed second heave rate calculated from the slopes was 

also too small to measure. Figure 83 shows the frost heave time plots of the sample. The 

heave rate was less than the non-stabilized and 5% cement stabilized subgrade. 

 
Figure 83. 10% cement stabilized subgrade frost heave time plots 

For 10% cement stabilized subgrade, the CBR value after freeze-thaw test was larger than 

the one without freeze-thaw test. The frost susceptibility of this material was classified as 

negligible level. Table 32 summarizes the frost-heave and thaw-weakening test results on the 

10% cement stabilized subgrade material. 
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Table 32. 10% cement stabilized subgrade frost-heave and thaw-weakening test results 

1st Frost-heave rate (mm/day) <1.00 
2nd Frost-heave rate (mm/day) <1.00 
CBR after freeze-thaw test (%) Too high 

CBR before freeze-thaw test (%) 94.5 
Frost susceptibility based on heave Negligible 
Frost susceptibility based on CBR Negligible 

 

Recycled subbase stabilized with cement 

Two recycled subbase samples stabilized with 2.5% cement were tested. The peak heave 

values of the samples were similar. The governed second heave rate calculated from the 

slopes was 12.70 mm/day. Figure 84 shows the frost heave time plots of these two samples. 

The heave rate was less than the non-stabilized recycled subbase. 
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Figure 84. 2.5% cement stabilized subbase frost heave time plots 

For 2.5% cement stabilized recycled subbase the moisture content profiles show the 

moisture contents decreased as the depth increased. Figure 85 shows the moisture content 

profiles of the post-test samples. 

0 20 40 60 80 100 120

H
ea

ve
 (m

m
)

0

5

10

15

20

25

Te
m

pe
ra

tu
re

 (°
C

)

-12

-8

-4

0

4

8

12

Sample Heave
Temperature at Top of Sample
Temperature at Bottom of Sample

0 20 40 60 80 100 120

H
ea

ve
 (m

m
)

0

5

10

15

20

25

Te
m

pe
ra

tu
re

 (°
C

)

-12

-8

-4

0

4

8

12

Sample 1

Sample 2



www.manaraa.com

 98 

 
Figure 85. 2.5% cement stabilized subbase moisture content profiles 

For 2.5% cement stabilized recycled subbase, the CBR value after freeze-thaw test was 

less than the one without freeze-thaw test. The frost susceptibility of this material was 

classified as low to high level. Table 33 summarizes the frost-heave and thaw-weakening test 

results on 2.5% cement stabilized recycled subbase material. 

Table 33. 2.5% cement stabilized subbase frost-heave and thaw-weakening test results 

1st Frost-heave rate (mm/day) 4.52 
2nd Frost-heave rate (mm/day) 12.70 
CBR after freeze-thaw test (%) 12.8 

CBR before freeze-thaw test (%) 95.6 
Frost susceptibility based on heave High 
Frost susceptibility based on CBR Low 

Two recycled subbase samples stabilized with 3.75% cement were tested. The peak heave 

values of the samples were similar. The governed second heave rate calculated from the 

slopes was 2.09 mm/day. Figure 86 shows the frost heave time plots of these two samples. 

The heave rate was less than the non-stabilized and 2.5% cement stabilized recycled subbase. 
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Figure 86. 3.75% cement stabilized subbase frost heave time plots 

For 3.75% cement stabilized recycled subbase the moisture content profiles show the 

moisture contents changed slightly as the depth increased. Figure 87 shows the moisture 

content profiles of the post-test samples. 
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Figure 87. 3.75% cement stabilized subbase moisture content profiles 

For 3.75% cement stabilized recycled subbase, the CBR value after freeze-thaw test was 

less than the one without freeze-thaw test. The frost susceptibility of this material was 

classified as low to negligible level. Table 34 summarizes the frost-heave and thaw-

weakening test results on 3.75% cement stabilized recycled subbase material. 

Table 34. 3.75% cement stabilized subbase frost-heave and thaw-weakening test results 

1st Frost-heave rate (mm/day) 1.31 
2nd Frost-heave rate (mm/day) 2.09 
CBR after freeze-thaw test (%) 35.1 

CBR before freeze-thaw test (%) 127.0 
Frost susceptibility based on heave Low 
Frost susceptibility based on CBR Negligible 

Two recycled subbase samples stabilized with 5% cement were tested. The peak heave 

values of the samples were similar. The governed second heave rate calculated from the 

slopes was 3.35 mm/day. Figure 88 shows the frost heave time plots of these two samples. 

The heave rate was less than the non-stabilized recycled subbase, but larger than the 3.75% 

cement stabilized recycled subbase. 
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 Figure 88. 5% cement stabilized subbase frost heave time plots  

For 5% cement stabilized recycled subbase the moisture content profiles show the 

moisture contents decreased slightly as the depth increased. Figure 89 shows the moisture 

content profiles of the post-test samples. 
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Figure 89. 5% cement stabilized subbase moisture content profiles 

For 5% cement stabilized recycled subbase, the CBR value after freeze-thaw test was less 

than the one without freeze-thaw test. The frost susceptibility of this material was classified 

as low to negligible level. Table 35 summarizes the frost-heave and thaw-weakening test 

results on 5% cement stabilized recycled subbase material. 

Table 35. 5% cement stabilized subbase frost-heave and thaw-weakening test results 

1st Frost-heave rate (mm/day) 1.66 
2nd Frost-heave rate (mm/day) 3.35 
CBR after freeze-thaw test (%) 56.7 

CBR before freeze-thaw test (%) 208.9 
Frost susceptibility based on heave Low 
Frost susceptibility based on CBR Negligible 

Two recycled subbase samples stabilized with 7.5% cement were tested. The peak heave 

values of the samples were similar. The governed second heave rate calculated from the 

slopes was 1.64 mm/day. Figure 90 shows the frost heave time plots of these two samples. 

The heave rate was less than the non-stabilized, 2.5%, 3.75%, 5% cement stabilized recycled 

subbase. 
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Figure 90. 7.5% cement stabilized subbase frost heave time plots 

For 7.5% cement stabilized recycled subbase the moisture content profiles show the 

moisture contents changed slightly as the depth increased. Figure 91 shows the moisture 

content profiles of the post-test samples. 
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Figure 91. 7.5% cement stabilized subbase moisture content profiles 

For 7.5% cement stabilized recycled subbase, the CBR value after freeze-thaw test was 

less than the one without freeze-thaw test. The frost susceptibility of this material was 

classified as very low to negligible level. Table 36 summarizes the frost-heave and thaw-

weakening test results on 7.5% cement stabilized recycled subbase material. 

Table 36. 7.5% cement stabilized subbase frost-heave and thaw-weakening test results 

1st Frost-heave rate (mm/day) 0.91 
2nd Frost-heave rate (mm/day) 1.64 
CBR after freeze-thaw test (%) 43.4 

CBR before freeze-thaw test (%) Too high 
Frost susceptibility based on heave Very low 
Frost susceptibility based on CBR Negligible 

 

Recycled subbase stabilized with fiber 

Two recycled subbase samples stabilized with 0.2% polypropylene (PP) fiber were 

tested. The peak heave values of the samples were similar. The governed second heave rate 

calculated from the slopes was 12.11 mm/day. Figure 92 shows the frost heave time plots of 

these two samples. The heave rate was less than the non-stabilized recycled subbase. 
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Figure 92. 0.2% PP fiber stabilized subbase frost heave time plots 

For 0.2% PP fiber stabilized recycled subbase the moisture content profiles show the 

moisture contents decreased as the depth increased. Figure 93 shows the moisture content 

profiles of the post-test samples. 
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Figure 93. 0.2% PP fiber stabilized subbase moisture content profiles 

For 0.2% PP fiber stabilized recycled subbase, the CBR value after freeze-thaw test was 

larger than the one without freeze-thaw test. The frost susceptibility of this material was 

classified as low to high level. Table 37 summarizes the frost-heave and thaw-weakening test 

results on 0.2% PP fiber stabilized recycled subbase material. 

Table 37. 0.2% PP fiber stabilized subbase frost-heave and thaw-weakening test results 

1st Frost-heave rate (mm/day) 10.35 
2nd Frost-heave rate (mm/day) 12.11 
CBR after freeze-thaw test (%) 11.4 

CBR before freeze-thaw test (%) 4.6 
Frost susceptibility based on heave High 
Frost susceptibility based on CBR Low 

Two recycled subbase samples stabilized with 0.4% PP fiber were tested. The peak heave 

values of the samples were similar. The governed second heave rate calculated from the 

slopes was 12.75 mm/day. Figure 94 shows the frost heave time plots of these two samples. 

The heave rate was less than the non-stabilized recycled subbase, but larger than the 0.2% PP 

fiber stabilized recycled subbase. 
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Figure 94. 0.4% PP fiber stabilized subbase frost heave time plots 

For 0.4% PP fiber stabilized recycled subbase the moisture content profiles show the 

moisture contents decreased as the depth increased. Figure 95 shows the moisture content 

profiles of the post-test samples. 
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Figure 95. 0.4% PP fiber stabilized subbase moisture content profiles 

For 0.4% PP fiber stabilized recycled subbase, the CBR value after freeze-thaw test was 

larger than the one without freeze-thaw test. The frost susceptibility of this material was 

classified as medium to high level. Table 38 summarizes the frost-heave and thaw-weakening 

test results on 0.4% PP fiber stabilized recycled subbase material. 

Table 38. 0.4% PP fiber stabilized subbase frost-heave and thaw-weakening test results 

1st Frost-heave rate (mm/day) 11.36 
2nd Frost-heave rate (mm/day) 12.75 
CBR after freeze-thaw test (%) 7.8 

CBR before freeze-thaw test (%) 7.3 
Frost susceptibility based on heave High 
Frost susceptibility based on CBR Medium 

Two recycled subbase samples stabilized with 0.6% PP fiber were tested. The peak heave 

values of the samples were similar. The governed first heave rate calculated from the slopes 

was 6.25 mm/day. Figure 96 shows the frost heave time plots of these two samples. The 

heave rate was less than the non-stabilized, 0.2%, and 0.4% PP fiber stabilized recycled 

subbase. 
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Figure 96. 0.6% PP fiber stabilized subbase frost heave time plots 

For 0.6% PP fiber stabilized recycled subbase the moisture content profiles show the 

moisture contents decreased as the depth increased. Figure 97 shows the moisture content 

profiles of the post-test samples. 
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Figure 97. 0.6% PP fiber stabilized subbase moisture content profiles 

For 0.6% PP fiber stabilized recycled subbase, the CBR value after freeze-thaw test was 

larger than the one without freeze-thaw test. The frost susceptibility of this material was 

classified as very low to medium level. Table 39 summarizes the frost-heave and thaw-

weakening test results on 0.6% PP fiber stabilized recycled subbase material. 

Table 39. 0.6% PP fiber stabilized subbase frost-heave and thaw-weakening test results 

1st Frost-heave rate (mm/day) 6.25 
2nd Frost-heave rate (mm/day) 5.12 
CBR after freeze-thaw test (%) 16.3 

CBR before freeze-thaw test (%) 5.8 
Frost susceptibility based on heave Medium 
Frost susceptibility based on CBR Very low 

Two recycled subbase samples stabilized with 0.2% monofilament (MF) fiber were 

tested. The peak heave values of the samples were similar. The governed second heave rate 

calculated from the slopes was 10.34 mm/day. Figure 98 shows the frost heave time plots of 

these two samples. The heave rate was less than the non-stabilized recycled subbase. 
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Figure 98. 0.2% MF fiber stabilized subbase frost heave time plots 

For 0.2% MF fiber stabilized recycled subbase the moisture content profiles show the 

moisture contents decreased as the depth increased. Figure 99 shows the moisture content 

profiles of the post-test samples. 
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Figure 99. 0.2% MF fiber stabilized subbase moisture content profiles 

For 0.2% MF fiber stabilized recycled subbase, the CBR value after freeze-thaw test was 

larger than the one without freeze-thaw test. The frost susceptibility of this material was 

classified as low to high level. Table 40 summarizes the frost-heave and thaw-weakening test 

results on 0.2% MF fiber stabilized recycled subbase material. 

Table 40. 0.2% MF fiber stabilized subbase frost-heave and thaw-weakening test results 

1st Frost-heave rate (mm/day) 8.78 
2nd Frost-heave rate (mm/day) 10.34 
CBR after freeze-thaw test (%) 12.1 

CBR before freeze-thaw test (%) 4.1 
Frost susceptibility based on heave High 
Frost susceptibility based on CBR Low 

Two recycled subbase samples stabilized with 0.4% MF fiber were tested. The peak 

heave values of the samples were similar. The governed second heave rate calculated from 

the slopes was 9.90 mm/day. Figure 100 shows the frost heave time plots of these two 

samples. The heave rate was less than the non-stabilized and 0.2% MF fiber stabilized 

recycled subbase. 
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Figure 100. 0.4% MF fiber stabilized subbase frost heave time plots 

For 0.4% MF fiber stabilized recycled subbase the moisture content profiles show the 

moisture contents decreased as the depth increased. Figure 101 shows the moisture content 

profiles of the post-test samples. 
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Figure 101. 0.4% MF fiber stabilized subbase moisture content profiles 

For 0.4% MF fiber stabilized recycled subbase, the CBR value after freeze-thaw test was 

larger than the one without freeze-thaw test. The frost susceptibility of this material was 

classified as low to high level. Table 41 summarizes the frost-heave and thaw-weakening test 

results on 0.4% MF fiber stabilized recycled subbase material. 

Table 41. 0.4% MF fiber stabilized subbase frost-heave and thaw-weakening test results 

1st Frost-heave rate (mm/day) 8.50 
2nd Frost-heave rate (mm/day) 9.50 
CBR after freeze-thaw test (%) 14.8 

CBR before freeze-thaw test (%) 7.9 
Frost susceptibility based on heave High 
Frost susceptibility based on CBR Low 

Two recycled subbase samples stabilized with 0.6% MF fiber were tested. The peak 

heave values of the samples were similar. The governed first heave rate calculated from the 

slopes was 6.94 mm/day. Figure 102 shows the frost heave time plots of these two samples. 

The heave rate was less than the non-stabilized, 0.2%, and 0.4% MF stabilized recycled 

subbase. 
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Figure 102. 0.6% MF fiber stabilized subbase frost heave time plots 

For 0.6% MF fiber stabilized recycled subbase the moisture content profiles show the 

moisture contents decreased as the depth increased. Figure 103 shows the moisture content 

profiles of the post-test samples. 
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Figure 103. 0.6% MF fiber stabilized subbase moisture content profiles 

For 0.6% MF fiber stabilized recycled subbase, the CBR value after freeze-thaw test was 

larger than the one without freeze-thaw test. The frost susceptibility of this material was 

classified as very low to medium level. Table 42 summarizes the frost-heave and thaw-

weakening test results on 0.6% MF fiber stabilized recycled subbase material. 

Table 42. 0.6% MF fiber stabilized subbase frost-heave and thaw-weakening test results 

1st Frost-heave rate (mm/day) 6.94 
2nd Frost-heave rate (mm/day) 6.11 
CBR after freeze-thaw test (%) 18.4 

CBR before freeze-thaw test (%) 8.6 
Frost susceptibility based on heave Medium 
Frost susceptibility based on CBR Very low 

Recycled subbase stabilized with cement and fiber 

One recycled subbase samples stabilized with 0.2% PP fiber and 3.75% cement was 

tested. The peak heave value of the sample was small. The governed second heave rate 

calculated from the slopes was 1.31 mm/day. Figure 104 shows the frost heave time plots of 

the samples. The heave rate was less than the non-stabilized recycled subbase. 

Moisture Content (%)

0 5 10 15 20 25

D
ep

th
 (m

m
)

0.0

25.4

50.8

76.2

101.6

127.0

152.4

Moisture Content (%)

0 5 10 15 20 25

0.0

25.4

50.8

76.2

101.6

127.0

152.4

Sample 1 Sample 2



www.manaraa.com

 117 

 
Figure 104. 0.2% PP fiber + 3.75% cement stabilized subbase frost heave time plots  

For 0.2% PP fiber + 3.75% cement stabilized recycled subbase the moisture content 

profiles show the moisture contents increased as the depth increased. Figure 105 shows the 

moisture content profiles of the post-test sample. 

 
Figure 105. 0.2% PP fiber + 3.75% cement stabilized subbase moisture content profile  
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heave and thaw-weakening test results on 0.2% PP fiber + 3.75% cement stabilized recycled 

subbase material. 

Table 43. 0.2% PP fiber + 3.75% cement stabilized subbase frost-heave and thaw-

weakening test results  

1st Frost-heave rate (mm/day) 0.42 
2nd Frost-heave rate (mm/day) 1.31 
CBR after freeze-thaw test (%) 58.2 

CBR before freeze-thaw test (%) 185.5 
Frost susceptibility based on heave Very low 
Frost susceptibility based on CBR Negligible 

One recycled subbase samples stabilized with 0.2% PP fiber and 3.75% cement was 

tested. The compaction delay time was 12 hours. The peak heave value of the sample was 

larger than the sample without compaction delay. The governed second heave rate calculated 

from the slopes was 3.83 mm/day. Figure 106 shows the frost heave time plots of the 

samples. The heave rate was less than the non-stabilized recycled subbase, but larger than the 

no compaction delay sample. 

 
Figure 106. 0.2% PP fiber + 3.75% cement stabilized subbase frost heave time plots (12-

hr compaction delay) 
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For 0.2% PP fiber + 3.75% cement stabilized recycled subbase with 12-hr compaction 

delay, the moisture content profiles show the moisture contents increased as the depth 

increased. Figure 107 shows the moisture content profiles of the post-test sample. 

 
Figure 107. 0.2% PP fiber + 3.75% cement stabilized subbase moisture content profile 

(12-hr compaction delay) 

For 0.2% PP fiber + 3.75% cement stabilized recycled subbase with 12-hr compaction 

delay, the after-thawing CBR value was less than the no compaction delay sample with the 

same stabilization method. The frost susceptibility of this material was classified as low to 

negligible level. Table 44 summarizes the frost-heave and thaw-weakening test results on 12-

hr compaction delay 0.2% PP fiber + 3.75% cement stabilized recycled subbase material. 

Table 44. 0.2% PP fiber + 3.75% cement stabilized subbase frost-heave and thaw-

weakening test results (12-hr compaction delay) 

1st Frost-heave rate (mm/day) 2.47 
2nd Frost-heave rate (mm/day) 3.83 
CBR after freeze-thaw test (%) 20.3 

CBR before freeze-thaw test (%) — 
Frost susceptibility based on heave Low 
Frost susceptibility based on CBR Negligible 

Two 0.4% PP fiber + 3.75% cement stabilized recycled subbase samples were tested. The 

peak heave values of the samples were similar. The governed second heave rates were too 
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small to be calculated from the slopes. Figure 108 shows the frost heave time plots of these 

two samples. The heave rate was less than the non-stabilized, 0.2% PP fiber + 3.75% cement 

stabilized, and 0.6% PP fiber + 3.75% cement stabilized recycled subbase. 

 
Figure 108. 0.4% PP fiber + 3.75% cement stabilized subbase frost heave time plots 
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profiles show that the moisture contents increased as the depth increased (Figure 109).  
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Figure 109. 0.4% PP fiber + 3.75% cement stabilized subbase moisture content profiles 

For 0.4% PP fiber + 3.75% cement stabilized recycled subbase, the after-thawing CBR 

value was less than the sample with the same stabilization method. The frost susceptibility of 

this material was classified as negligible level. Table 45 summarizes the frost-heave and 

thaw-weakening test results of 0.4% PP fiber + 3.75% cement stabilized recycled subbase 

material. 

Table 45. 0.4% PP fiber + 3.75% cement stabilized subbase frost-heave and thaw-

weakening test results 

1st Frost-heave rate (mm/day) <1.00 
2nd Frost-heave rate (mm/day) <1.00 
CBR after freeze-thaw test (%) 127.4 

CBR before freeze-thaw test (%) Too high 
Frost susceptibility based on heave Negligible 
Frost susceptibility based on CBR Negligible 

Two 0.4% PP fiber + 3.75% cement stabilized recycled subbase samples with 12-hr 

compaction delay were tested. The peak heave values of the samples were similar. The 

governed second heave rate calculated from the slopes was 2.98 mm/day. Figure 110 shows 

the frost heave time plots of these two samples. The heave rate was less than the non-

stabilized recycled subbase, but larger than the no compaction delay samples. 
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Figure 110. 0.4% PP fiber + 3.75% cement stabilized subbase frost heave time plots (12-

hr compaction delay) 

For 0.4% PP fiber + 3.75% cement stabilized recycled subbase with 12-hr compaction 

delay, the moisture content profiles show the moisture contents increased as the depth 

increased. Figure 111 shows the moisture content profiles of the post-test samples. 
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Figure 111. 0.4% PP fiber + 3.75% cement stabilized subbase moisture content profiles 

(12-hr compaction delay) 

For 0.4% PP fiber + 3.75% cement stabilized recycled subbase with 12-hr compaction 

delay, the after-thawing CBR values were less than the no compaction delay samples with 

the same stabilization method. The frost susceptibility of this material was classified as low 

to negligible level. Table 46 summarizes the frost-heave and thaw-weakening test results on 

this material. 

Table 46. 0.4% PP fiber + 3.75% cement stabilized subbase frost-heave and thaw-

weakening test results (12-hr compaction delay) 

1st Frost-heave rate (mm/day) 1.93 
2nd Frost-heave rate (mm/day) 2.98 
CBR after freeze-thaw test (%) 19.8 

CBR before freeze-thaw test (%) — 
Frost susceptibility based on heave Low 
Frost susceptibility based on CBR Negligible 

One recycled subbase samples stabilized with 0.6% PP fiber + 3.75% cement was tested. 

The peak heave value of the sample was small. The governed first heave rate calculated from 

the slopes was 1.48 mm/day. Figure 112 shows the frost heave time plots of the sample. The 

heave rate was less than the non-stabilized recycled subbase, but larger than the 0.2% PP 

fiber + 3.75% cement stabilized recycled subbase. 
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Figure 112. 0.6% PP fiber + 3.75% cement stabilized subbase frost heave time plots 

For 0.6% PP fiber + 3.75% cement stabilized recycled subbase the moisture content 

profiles show the moisture contents increased as the depth increased. Figure 113 shows the 

moisture content profiles of the post-test sample. 

 
Figure 113. 0.6% PP fiber + 3.75% cement stabilized subbase moisture content profiles 
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material was classified as very low level. Table 47 summarizes the frost-heave and thaw-

weakening test results on 0.6% PP + 3.75% cement stabilized recycled subbase material. 

Table 47. 0.6% PP fiber + 3.75% cement stabilized subbase frost-heave and thaw-

weakening test results 

1st Frost-heave rate (mm/day) 1.48 
2nd Frost-heave rate (mm/day) 1.19 
CBR after freeze-thaw test (%) 120.1 

CBR before freeze-thaw test (%) Too high 
Frost susceptibility based on heave Very low 
Frost susceptibility based on CBR Very low 

One recycled subbase samples stabilized with 0.2% MF fiber + 3.75% cement was tested. 

The peak heave value of the sample was small. The governed first heave rate calculated from 

the slopes was 0.75 mm/day. Figure 114 shows the frost heave time plots of the sample. The 

heave rate was less than the non-stabilized recycled subbase. 

 
Figure 114. 0.2% MF fiber + 3.75% cement stabilized subbase frost heave time plots 
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9.0%, the other moisture contents were l around 7.5%. Figure 115 shows the moisture 

content profiles of the post-test sample. 

 
Figure 115. 0.2% MF fiber + 3.75% cement stabilized subbase moisture content profiles 

For 0.2% MF fiber + 3.75% cement stabilized recycled subbase, the CBR value after 

freeze-thaw test was less than the one without freeze-thaw test. The frost susceptibility of this 

material was classified as negligible level. Table 48 summarizes the frost-heave and thaw-

weakening test results on 0.2% MF fiber + 3.75% cement stabilized recycled subbase 

material. 

Table 48. 0.2% MF fiber + 3.75% cement stabilized subbase frost-heave and thaw-

weakening test results 

1st Frost-heave rate (mm/day) 0.75 
2nd Frost-heave rate (mm/day) 0.62 
CBR after freeze-thaw test (%) 190.5 

CBR before freeze-thaw test (%) 184.9 
Frost susceptibility based on heave Negligible 
Frost susceptibility based on CBR Negligible 

One recycled subbase samples stabilized with 0.4% MF fiber + 3.75% cement was tested. 

The peak heave value of the sample was small. The governed second heave rate calculated 

from the slopes was 1.43 mm/day. Figure 116 shows the frost heave time plots of the sample. 
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The heave rate was less than the non-stabilized recycled subbase, but larger than the 0.2% 

MF + 3.75% cement stabilized recycled subbase. 

 
Figure 116. 0.4% MF fiber + 3.75% cement stabilized subbase frost heave time plots 

For 0.4% MF fiber + 3.75% cement stabilized recycled subbase, the CBR value after 

freeze-thaw test was less than the one without freeze-thaw test. The frost susceptibility of this 

material was classified as very low to negligible level. Table 49 summarizes the frost-heave 

and thaw-weakening test results on 0.4% MF fiber + 3.75% cement stabilized recycled 

subbase material. 

Table 49. 0.4% MF fiber + 3.75% cement stabilized subbase frost-heave and thaw-

weakening test results 

1st Frost-heave rate (mm/day) 1.11 
2nd Frost-heave rate (mm/day) 1.43 
CBR after freeze-thaw test (%) 203.2 

CBR before freeze-thaw test (%) 143.1 
Frost susceptibility based on heave Very low 
Frost susceptibility based on CBR Negligible 

One recycled subbase samples stabilized with 0.6% MF fiber + 3.75% cement was tested. 

The peak heave value of the sample was small. The governed first heave rate calculated from 

the slopes was 1.00 mm/day. Figure 117 shows the frost heave time plots of the sample. The 
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heave rate was less than the non-stabilized and 0.4% MF fiber + 3.75% cement stabilized 

recycled subbase, but larger than the 0.2% MF fiber +3.75% cement stabilized recycled 

subbase. 

 
Figure 117. 0.6% MF fiber + 3.75% cement stabilized subbase frost heave time plots 

For 0.6% MF fiber + 3.75% cement stabilized recycled subbase, the CBR value after 

freeze-thaw test was less than the one without freeze-thaw test. The frost susceptibility of this 

material was classified as negligible level. Table 50 summarizes the frost-heave and thaw-

weakening test results on this material. 

Table 50. 0.6% MF fiber + 3.75% cement stabilized subbase frost-heave and thaw-

weakening test results 

1st Frost-heave rate (mm/day) 0.81 
2nd Frost-heave rate (mm/day) 1.00 
CBR after freeze-thaw test (%) 177.0 

CBR before freeze-thaw test (%) 158.7 
Frost susceptibility based on heave Negligible 
Frost susceptibility based on CBR Negligible 
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Western Iowa loess with long cure period 

In order to evaluate the influence of cure period to improving freeze-thaw performance of 

geomaterials, frost-heave and thaw-weakening tests were conducted on 15% FA stabilized 

western Iowa loess with three cure periods, 7-day, 90-day, and 180-day. 

Two western Iowa loess samples stabilized with 15% FA were tested. The samples were 

cured at 100 °F for 7 days before testing. The peak heave values range from 7.50 mm to 

16.00 mm. The average governed second heave rate calculated from the slopes was 14.10 

mm/day. Figure 118 shows the frost heave time plots of the 7-day cured 15% FA stabilized 

western Iowa loess. 

 
Figure 118. 7-day cured FA stabilized loess frost heave time plots 

The CBR value after freeze-thaw of this material was 7.1%. The frost susceptibility was 

classifies as medium to high level. Table 51 summarizes the frost-heave and thaw-weakening 

test results of this material. 
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Table 51. 7-day cured FA stabilized loess frost-heave and thaw-weakening test results 

1st Frost-heave rate (mm/day) 6.20 
2nd Frost-heave rate (mm/day) 14.10 
CBR after freeze-thaw test (%) 7.1 

Frost susceptibility based on heave High 
Frost susceptibility based on CBR Medium 

 
Four western Iowa loess samples stabilized with 15% FA were tested. The samples were 

cured at 100 °F for 90 days before testing. The peak heave values range from 10.00 mm to 

15.00 mm. The average governed second heave rate calculated from the slopes was 11.83 

mm/day. Figure 119 shows the frost heave time plots of the 90-day cured 15% FA stabilized 

western Iowa loess. 
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Figure 119. 90-day cured FA stabilized loess frost heave time plots 
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The CBR value after freeze-thaw of this material was close to the 7-day cured samples. 

The frost susceptibility was classifies as medium to high level. Table 52 summarizes the 

frost-heave and thaw-weakening test results of this material. 

Table 52. 90-day cure FA stabilized loess frost-heave and thaw-weakening test results 

1st Frost-heave rate (mm/day) 5.16 
2nd Frost-heave rate (mm/day) 11.83 
CBR after freeze-thaw test (%) 8.7 

Frost susceptibility based on heave High 
Frost susceptibility based on CBR Medium 

Four western Iowa loess samples stabilized with 15% FA were tested. The samples were 

cured at 100 °F for 180 days before testing. The peak heave values were similar. The average 

governed second heave rate calculated from the slopes was 8.27 mm/day. Figure 120 shows 

the frost heave time plots of the 180-day cured 15% FA stabilized western Iowa loess. 
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Figure 120. 180-day cure FA stabilized loess frost heave time plots 
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The CBR value after freeze-thaw of this material was higher than the 7-day and 90-day 

cured samples. The frost susceptibility was classifies as negligible to high level. Table 53 

summarizes the frost-heave and thaw-weakening test results of this material. 

Table 53. 180-day cure FA stabilized loess frost-heave and thaw-weakening test results 

1st Frost-heave rate (mm/day) 3.74 
2nd Frost-heave rate (mm/day) 8.27 
CBR after freeze-thaw test (%) 32.0 

Frost susceptibility based on heave High 
Frost susceptibility based on CBR Negligible 
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Summary of frost-heave and thaw-weakening tests 

Various combinations of geomaterials and stabilizers were tested to provide the frost 

susceptibility of the materials. From evaluating the test results, the improvement on the 

freeze-thaw performance of geomaterials can also be determined. The stabilization effects of 

different types and contents of stabilizers on freeze-thaw were compared based on the frost 

heave rates and CBR values. The stiffness changes because of freeze-thaw cycles can be 

presented by comparing the pre- and post-test CBRs. The post-test moisture content profiles 

of six layers of each sample help to understand the water movement and moisture changes 

during the freeze-thaw cycles. 

The original non-stabilized subgrade was classified as sandy lean clay (CL) and had a 

heave rate of 11.43 mm/day. The non-stabilized recycled subbase was silty sand with gravel 

(SM) with a heave rate of 15.63 mm/day. With these heave rates, both materials were highly 

frost susceptible. However, the post-test CBR value of the non-stabilized subgrade was 1.4% 

which was less than the 8.8% post-test CBR value of the non-stabilized recycled subbase. 

The frost susceptibilities based on CBR values were high for the subgrade and medium for 

the subbase. 

Fly ash stabilized subgrade 
Different FA-subgrade combinations resulted in different frost susceptibilities. Of all of 

the FA-stabilized combinations, the 15% Ames FA and the 15% Port Neal FA were the best 

for improving the freeze-thaw performance. The 15% FA stabilized samples even 

outperformed the 20% FA samples. The Port Neal FA was more effective than the Ames or 

Muscatine FA for improving the frost susceptibility of the subgrade (Figure 121). Both the 

15% Port Neal and Ames FA stabilized subgrade reached the very low to negligible frost 

susceptibility levels based on CBR, but the 15% Ames FA only decreased the heave-rate 

based frost susceptibility levels from high to medium. Both the heave-rate and CBR based 

frost susceptibilities of the 5% and 10% Muscatine FA stabilized subgrade remained at the 

high level. The post-test CBRs were less than the CBRs without freeze-thaw cycles.  
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Figure 121. Frost heave rates of fly ash stabilized subgrade 

SiO2, Al2O3, and CaO are the three active components of these three types of FA. In this 

study. The chemical reactions between these components and soils were complex. Therefore, 

it is difficult to determine the influence of each component to the fly ash stabilization effects. 

Table 54 summarizes the setting time of the three types of fly ash. The fly with shorter 

setting time performed better on controlling the frost heave and stiffness changes during 

freeze-thaw cycles. Table 55 summarizes the frost susceptibility of FA stabilized subgrade 

and the active components of the FA.  

Table 54. Setting time of three fly ash 

FA source location Port Neal Ames Muscatine 
Initial sett time (min) 2.75 4.25 7.00 
Final set time (min) 6.00 18.5 166.00 
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Table 55. Summary of frost susceptibility of FA stabilized subgrade and three active 

components content of the FA 

Stabilization 
method 

Frost 
susceptibility  

based on 
heave 

Frost 
susceptibility  

based on  
CBR 

5% Ames fly ash High Medium 
10% Ames fly ash Medium Medium 
15% Ames fly ash Medium Negligible 
20% Ames fly ash Medium Low 
5% Muscatine fly ash High High 
10% Muscatine fly ash High High 
5% Port Neal fly ash Medium Medium 
10% Port Neal fly ash High Low 
15% Port Neal fly ash Very low Very low 
20% Port Neal fly ash Low Very low 

 

Cement-stabilized subgrade 

The cement was more effective than the same amount of FA on improving freeze-thaw 

performance of subgrade. No matter the frost susceptibility based on heave or CBR, it was at 

negligible level for both 5% and 10% cement contents. The stiffness increased after the 

freeze-thaw cycles. The post-test CBRs were larger than the no freeze-thaw CBRs. As the 

increment of cement content mixed with the subgrade, the geomaterials were less frost 

susceptible. Table 56 summarizes the frost susceptibility of two cement stabilized subgrade 

materials. 

Table 56. Summary of frost susceptibility of cement stabilized subgrade 

Stabilization 
method 

Frost susceptibility  
based on heave 

Frost susceptibility  
based on CBR 

5% cement Negligible Negligible 

10% cement Negligible Negligible 
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Cement stabilized recycled subbase 

Cement was also used to stabilizing the recycled subbase. The frost susceptibility was 

decreased as the cement content increased. Besides the 2.5% cement stabilized subbase 

ranged from low to high frost susceptible, all 3.75%, 5.0%, and 7.5% cement stabilized 

samples resulted in low to negligible frost susceptibilities. Figure 122 shows the frost heave 

rates of cement stabilized subgrade and subbase.  

 
Figure 122. Frost heave rates of cement stabilized subgrade and subbase 

The CBR values decreased 70-80% after the freeze-thaw cycles. The no freeze-thaw 

CBR values of the four materials were around or larger than 100.0%. The 0.2 in. CBR values 

of the 7.5% cement stabilized samples could not be obtained with the load cell with 10K lb 

limits. The frost susceptibility of the mixed geomaterials decreased as the cement content in 

the mixtures increased. Table 57 summarizes the frost susceptibility of cement stabilized 

recycled subbase. 
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Table 57. Summary of frost susceptibility of cement stabilized recycled subbase 

Stabilization 
method 

Frost susceptibility  
based on heave 

Frost susceptibility  
based on CBR 

2.50% cement High Low 

3.75% cement Low Negligible 

5.00% cement Low Negligible 

7.50% cement Very low Negligible 

 

Geofiber stabilized recycled subbase 

Two types of geofiber with three different contents were mixed with the recycled subbase 

for freeze-thaw tests. The PP fiber provided the similar frost susceptibilities as the same 

amount of MF fiber. The frost susceptibilities based on heave ranged from medium to high 

for all six combinations. Figure 123 shows the frost heave rates of fibers stabilized recycled 

subbase. However, 0.6% PP and 0.6% MF stabilized samples both resulted in very low frost 

susceptibilities based on CBRs. The stiffness changes of fiber stabilized subbase were 

different to most of the materials with other stabilization methods, but the same to the non-

stabilized recycled subbase. The post-test CBRs were larger than the pre-test CBRs. Table 58 

summarizes the frost susceptibility of fiber stabilized recycled subbase. 



www.manaraa.com

 140 

 
Figure 123. Frost heave rates of fibers stabilized subbase 

Table 58. Summary of frost susceptibility of fiber stabilized recycled subbase 

Stabilization 
method 

Frost susceptibility  
based on heave 

Frost susceptibility  
based on CBR 

0.2% PP High Low 

0.4% PP High Medium 

0.6% PP Medium Very low 

0.2% MF High Low 

0.4% MF High Low 

0.6% MF Medium Very low 
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A constant cement content (3.75%) was added to each of the six geofiber combinations. 

The addition of cement improved the freeze-thaw performance of the materials stabilized 
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cement stabilized samples, 0.4% PP + 3.75% cement turned out to be more effective than the 

other combinations. For MF + cement stabilized samples, both 0.2% MF + 3.75% cement 

and 0.6% MF + 3.75% cement controlled the frost heave slightly better than 0.4% MF + 3.75% 

cement. Figure 124 shows the frost heave rates of cement + fibers stabilized recycled subbase. 

 
Figure 124. Frost heave rates of cement + fibers stabilized subbase 

The stiffness decreased after freeze-thaw tests for PP + cement stabilized materials. 

However, the post-test CBRs of the MF + cement stabilized samples also increased with 

variable amounts to the CBRs without freeze-thaw cycles. Therefore, the cement + fiber 

stabilization was an effective method for controlling the freeze-thaw performance and 

improving the frost susceptibility of recycled subbase.  

Because stabilizing frost susceptible geomaterials with 5% cement or 3.75% + 0.2% fiber 

reduces frost susceptibility to very low to negligible levels for a geomaterial, the pavement 

designers ought to balance the environmental impact with the cost. 5% cement results in less 

cost and higher environmental impact, while 3.75% cement + 0.2% fiber results in higher 

cost and lower environmental impact. Table 59 summarizes the frost susceptibility of cement 

+ fiber stabilized recycled subbase. 
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Table 59. Summary of frost susceptibility of cement + fiber stabilized recycled subbase 

Stabilization 
method 

Frost susceptibility  
based on heave 

Frost susceptibility  
based on CBR 

0.2% PP + 3.75% cement Very low Negligible 

0.4% PP + 3.75% cement Negligible Negligible 

0.6% PP + 3.75% cement Very low Very low 

0.2% MF+ 3.75% cement Negligible Negligible 

0.4% MF+ 3.75% cement Very low Negligible 

0.6% MF+ 3.75% cement Negligible Negligible 

Two kinds of materials, 0.2% PP + 3.75% cement stabilized and 0.4% PP + 3.75% 

cement stabilized recycled subbase with 12-hr compaction delay were tested to determine the 

influence the compaction delay time to stabilization effects. The heave rates increased 

(Figure 125) and the CBR values decreased comparing with the same materials without 

compaction delay. The frost susceptibility of the materials with longer compaction delay 

slightly increased. Table 60 summarizes the frost susceptibility of cement + fiber stabilized 

recycled subbase with longer compaction delay. 
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Figure 125. Frost heave rates of cement + fibers stabilized subbase with long 

compaction delay 

Table 60. Summary of frost susceptibility of cement + fiber stabilized recycled subbase 

with longer compaction delay 

Stabilization 
method 

Frost susceptibility  
based on heave 

Frost susceptibility  
based on CBR 

0.2% PP + 3.75% cement 
(12-hr compaction delay) Low Negligible 

0.4% PP + 3.75% cement 
(12-hr compaction delay) Low Negligible 

 

Fly ash stabilized western Iowa loess 
Western Iowa loess stabilized with 15% FA was tested to evaluate the influence of three 

cure periods to freeze-thaw performance. The freeze-thaw tests resulted in the same frost 

susceptibility for both 7-day and 90-day cured samples, which was medium based on heave 
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negligible level. CBR values changed from 7.1% to 32.0% as the cure time extended from 7 

days to 180 days. Therefore, 180-day cure is more effective than 90-day cure for improving 

the frost susceptibility of FA stabilized western Iowa loess, and there was not effective 

improvement increasing the cure period from 7 days to 90 days. Figure 126 shows the frost 

heave rates and susceptibility of this kind of materials. Table 61 summarizes the frost 

susceptibility of FA stabilized western Iowa loess with longer cure period. 

 
Figure 126. Frost heave rates of FA stabilized western Iowa loess 

Table 61. Summary of frost susceptibility of FA stabilized western Iowa loess with 

longer cure period 

Stabilization 
method 

Frost susceptibility  
based on heave 

Frost susceptibility  
based on CBR 

15% fly ash 7 days curing High Medium 

15% fly ash 90 days curing High Medium 

15% fly ash 180 days curing High Negligible 
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Overall summary 
By testing the frost heave rates and CBR values and comparing the frost susceptibility of 

each kind of non-stabilized and stabilized geomaterials, cement and cement + geofiber turned 

out to be more effective than other stabilization methods to improve the frost susceptibility of 

the geomaterials. Figure 127 shows the laboratory CBR values of non-stabilized and 

stabilized subgrade and recycled subbase. 

 
Figure 127. CBR values of non-stabilized and stabilized subgrade and subbase 

Water content of each layer was tested to help understand the ice lens theory. According 

to ice lens theory and the effects of capillary stress, water should be moved upward to form a 

moisture content gradient as shown in Figure 128. The moisture content decreased as the 

depth increased. All of the tested samples confirmed this expected trend except for some of 

the fiber and fiber + cement stabilized subbase samples as shown in Figure 128. The moisture 

content either did not change or slightly increased as the depth increased in the fiber or fiber-

cement samples. The possible reason is the different pore sizes of these two geomaterials. For 

all tested samples, the moisture content of each layer after freeze-thaw cycles was larger than 

the original moisture content of mixtures before compaction. 
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Figure 128. Two kinds of moisture content profiles 

Based on the lab results and White’s statement (2012), higher initial cost correlates with 

lower frost susceptibility. 0.4% MF fibers + 3.75% cement stabilized subbase turned out to 

be the most effective and also the most expensive methods for improving the frost 

susceptibility. Figure 129 shows the initial costs of different stabilization methods with 

various frost susceptibility. 
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Figure 129. Initial costs of stabilization methods with various frost susceptibility 

According to ASTM D5918 (Table 62), frost susceptibility of all the tested materials was 

classified both based on frost heave rates and CBR values.  
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Table 62. ASTM D5918 frost susceptibility classification 

Frost susceptibility 
classification 

2nd 8-hr heave rate 
(mm/d) 

CBR after thaw  
(%) 

Negligible <1 >20 
Very low 1 to 2 20 to 15 

Low 2 to 4 15 to 10 
Medium 4 to 8 10 to 5 

High 8 to 16 5 to 2 
Very High >16 <2 

The frost susceptibility of non-stabilized geomaterials, FA and cement stabilized 

subgrade, cement, geofiber, and mixtures of cement and geofiber stabilized recycled subbase, 

and FA stabilized western Iowa loess with different cure periods were classified according to 

ASTM D5918 based on the test results. Cement and cement + geofiber turned out to be more 

effective than other stabilization methods to improve the frost susceptibility of both subgrade 

and recycled subbase. Fly ash with 15% effectively controlled the stiffness changes of 

subgrade during freeze-thaw cycles. The CBR reduction factor (Rf) is defined as a ratio of 

two different CBRs. This factor represents the direction and rate of the change between two 

CBRs. Table 63 summarizes the frost-heave and thaw-weakening test results. 

Table 63. Summary of frost-heave and thaw-weakening tests results 

Material Stabilizer 
Heave  
rate 

(mm/d) 

Post- 
test  

CBR  
(%) 

Pre- 
test  

CBR  
(%) 

Rf 
F/S  

based  
on heave 

F/S  
based  

on CBR 

Subgrade 

No stabilizer 11.43 1.4 2.8 0.21 High Very high 
5% Ames fly ash 8.40 6.6 15.5 0.43 High Medium 
10% Ames fly ash 6.60 9.6 44.6 0.22 Medium Medium 
15% Ames fly ash 6.87 20.1 73.2 0.27 Medium NG 
20% Ames fly ash 7.85 10.2 18.2 0.56 Medium Low 
5% Muscatine fly ash 9.88 2.9 — — High High 
10% Muscatine fly ash 12.32 2.6 — — High High 
5% Port Neal fly ash 6.61 5.7 — — Medium Medium 
10% Port Neal fly ash 8.21 11.2 15.0 0.75 High Low 
15% Port Neal fly ash 1.96 16.9 25.8 0.66 Very low Very low 
20% Port Neal fly ash 3.16 17.9 — — Low Very low 
5% cement <1.00 165.8 37.3 4.45 NG  NG 
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Table 63. Summary of frost-heave and thaw-weakening tests results (continued) 

Material Stabilizer 
Heave  
rate 

(mm/d) 

Post- 
test  

CBR  
(%) 

Pre- 
test  

CBR  
(%) 

Rf 
F/S  

based  
on heave 

F/S  
based  

on CBR 

Subgrade 10% cement <1.00 TH 94.5 — NG  NG 

Recycled  
subbase 

No stabilizer 15.63 8.8 4.6 1.91 High Medium 

2.5% cement 12.70 12.8 95.6 0.13 High Low 
3.75% cement 2.09 35.1 127.0 0.28 Low NG 
5.0% cement 3.35 56.7 208.9 0.27 Low NG 
7.5% cement 1.64 43.4 TH — Very low NG 
0.2% PP 12.11 11.4 4.6 2.48 High Low 
0.4% PP 12.75 7.8 7.3 1.07 High Medium 
0.6% PP 6.25 16.3 5.8 2.81 Medium Very low 
0.2% MF 10.34 12.1 4.1 2.95 High Low 
0.4% MF 9.90 14.8 7.9 1.87 High Low 
0.6% MF  6.94 18.4 8.6 2.14 Medium Very low 
0.2% PP + 3.75% 
cement 1.31 58.2 185.5 0.31 Very low NG 

0.2% PP + 3.75% 
cement 
(12-hr compaction 
delay) 

3.83 20.3 — — Low NG 

0.4% PP + 3.75% 
cement <1.00 127.4 TH — NG NG 

0.4% PP + 3.75% 
cement  
(12-hr compaction 
delay) 

2.98 19.8 — — Low NG 

0.6% PP + 3.75% 
cement 1.48 120.1 TH — Very low Very low 

0.2% MF+ 3.75% 
cement 0.75 190.5 184.9 1.03 NG NG 

0.4% MF+ 3.75% 
cement 1.43 203.2 143.1 1.42 Very low NG 

0.6% MF+ 3.75% 
cement 1.00 177.0 158.7 1.12 NG NG 

Western  
Iowa  
loess 

15% fly ash 7 days 
curing 14.10 7.1 — — High Medium 

15% fly ash 90 days 
curing 11.83 8.7 — — High Medium 

15% fly ash 180 days 
curing 8.27 32.0 — — High NG 

 Legend: F/T=Freeze-thaw, F/S=Frost susceptibility, TH=Too high, NG=Negligible, —=Data not available. 
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IN SITU TESTS 

In situ tests, including dynamic cone penetration (DCP) tests and falling weight 

deflectometer (FWD) tests, were performed at the Boone County Test Sections site. The 

California bearing ratio (CBR) of each layer was determined from DCP tests. The deflection 

measured at the center of the loading plate (D0) was the direct output from the FWD tests, 

which can be used to determine the elastic modulus (E) of the composite pavement system. 

Lower D0 indicates larger elastic modulus, which stands for the pavement is stiffer. The D0 

used in this research was correlated to a loading of 14000 lbs. Table 64 shows the 

stabilization technology for each street segment implemented at the Boone Test Sections site. 

The following sections present the DCP profiles and D0 variations of each street segment 

at different time. The data from October 2012 can be treated as the before-freezing test 

results; the data from February 2013 can be treated as the during-freezing (frozen) test 

results; and the April 2013 data can be treated as the after-thawing test results. By comparing 

the test results at these different times, the effects of freezing and thawing on the properties 

of soils with different stabilization methods can be evaluated. The effectiveness of different 

stabilization methods on controlling the influences from freezing and thawing can also be 

compared. 

Table 64. Stabilization technologies implemented at the Boone Test Sections site 

Street Segment Foundation Layer Profile (above natural subgrade) 

1st St. North 6 in. 
CLSB 12 in. compacted subgrade South 

2nd St. North 6 in. 
CLSB 12 in. mechanically stabilized subgrade South 

3rd St. 
North 2 in. 

CLSB 4 in. geocell reinforced MSB, NW geotextile 

South 1 in. 
CLSB 6 in. geocell reinforced MSB, NW geotextile 

4th St. 
North 6 in. 

CLSB NW geotextile 

South 6 in. 
CLSB woven geotextile 

5th St. 
North 6 in. 

CLSB triaxial geogrid 

South 6 in. 
CLSB biaxial geogrid 
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Table 64. Stabilization technologies implemented at the Boone Test Sections site 

(continued) 

Street Segment Foundation Layer Profile (above natural subgrade) 

6th St. 

North 6 in. 
CLSB 6 in. recycled subbase + 5% cement + 0.4% PP fibers 

South 6 in. 
CLSB 

Synthetic Subsurface Drainage Layer, 
6 in. recycled subbase + 5% cement + 0.4% MF fibers 

7th St. North 6 in. 
MSB 6 in. recycled subbase + 5% cement South 

8th St. North 6 in. 
CLSB 12 in. compacted subgrade South 

9th St. North 6 in. 
CLSB 6 in. reclaimed subbase South 

10th St. North 6 in. 
CLSB 

compacted subgrade 
South Natural subgrade 

11th St. 
North 6 in. 

CLSB 12 in. 10% cement stabilized subgrade 

South 6 in. 
CLSB 12 in. 20% fly ash (Port Neal) stabilized subgrade 

12th St. 
North 6 in. 

CLSB 12 in. 15% fly ash (Ames) stabilized subgrade 

South 6 in. 
CLSB 

12 in. 10% fly ash (Muscatine and Port Neal) 
stabilized subgrade 

Legend: CLSB = crushed limestone subbase GP-GM or A-1-a (7% fines content), NW = non-woven. 

1st Street South 

The layer between 6 in. and 18 in. of the 1st Street South was compacted subgrade. The 

DCP profiles of April 2012, October 2012, and April 2013 are shown in Figure 130. The 

average CBR value of the layer in October 2012 was 12.0% compared with 37.0% in April 

2013.  



www.manaraa.com

 152 

 
Figure 130. 1st Street South seasonal DCP variations 

The variation of D0 with time is shown in Figure 131. It presents a decrease in D0 at 

February 2013 followed by an increase at April 2013. This represents the effects of freezing 

and thawing to the soil stiffness. 
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Figure 131. 1st Street South seasonal D0 variations 

1st Street North 

The 6 inch to 18 inch layer of the 1st Street North was also stabilized with compacted 

subgrade. The DCP profiles of April 2012, October 2012, and April 2013 are shown in 

Figure 132. The average CBR value of stabilized layer at October 2012 was less than the 

April 2013 value. 
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Figure 132. 1st Street North seasonal DCP variations 

The variation of D0 with time is shown in Figure 133. It presents a decrease in D0 at 

February 2013 followed by an increase at April 2013. This represents the effects of freezing 

and thawing on the soil stiffness. 
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Figure 133. 1st Street North seasonal D0 variations 

2nd Street South 

The 6 inch to 18 inch layer of the 2nd Street South was stabilized with mechanically 

stabilized subgrade. The DCP profiles of April 2012, October 2012, and April 2013 are 

shown in Figure 134. The average CBR value of stabilized layer at October 2012 was less 

than the April 2013 value. 
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Figure 134. 2nd Street South seasonal DCP variations 

The variation of D0 with time is shown in Figure 135. It presents a decrease in D0 at 

February 2013 followed by an increase at April 2013. This represents the effects of freezing 

and thawing to the soil stiffness. 
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Figure 135. 2nd Street South seasonal D0 variations 

2nd Street North 

The 6 inch to 18 inch layer of the 2nd Street North was stabilized with mechanically 

stabilized subgrade. The DCP profiles of April 2012, October 2012, and April 2013 are 

shown in Figure 136. The average CBR value of stabilized layer at October 2012 was less 

than the April 2013 value. 
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Figure 136. 2nd Street North seasonal DCP variations 

The variation of D0 with time is shown in Figure 137. It presents a decrease in D0 at 

February 2013 followed by an increase at April 2013. This represents the effects of freezing 

and thawing to the soil stiffness. 
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Figure 137. 2nd Street North seasonal D0 variations 

3rd Street South 

Geocell and non-woven geotextile were used to stabilize the 3rd Street South. The DCP 

profiles of April 2012, October 2012, and April 2013 are shown in Figure 138. The average 

CBR value of stabilized layer of October 2012 was larger than the April 2013 value. 
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Figure 138. 3rd Street South seasonal DCP variations 

The variation of D0 with time is shown in Figure 139. It presents a decrease in D0 at 

February 2013 followed by an increase at April 2013. This represents the effects of freezing 

and thawing to the soil stiffness. 
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Figure 139. 3rd Street South seasonal D0 variations 

3rd Street North 

Geocell and non-woven geotextile were used to stabilize the 3rd Street North. The DCP 

profiles of April 2012, October 2012, and April 2013 are shown in Figure 140. The average 

CBR value of stabilized layer of October 2012 was less than the April 2013 value. 
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Figure 140. 3rd Street North seasonal DCP variations 

The variation of D0 with time is shown in Figure 141. It presents a decrease in D0 at 

February 2013 followed by an increase at April 2013. This represents the effects of freezing 

and thawing to the soil stiffness. 
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Figure 141. 3rd Street North seasonal D0 variations 

4th Street South 

Woven geotextile was used to stabilize the 4th Street South. The DCP profiles of April 

2012, October 2012, and April 2013 are shown in Figure 142. The average CBR value of 

stabilized layer at October 2012 was larger than the April 2013 value. 
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Figure 142. 4th Street South seasonal DCP variations 

The variation of D0 with time is shown in Figure 143. It presents a decrease in D0 at 

February 2013 followed by an increase at April 2013. This represents the effects of freezing 

and thawing to the soil stiffness. 
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Figure 143. 4th Street South seasonal D0 variations 

4th Street North 

Non-woven geotextile was used to stabilize the 4th Street North. The DCP profiles of 

April 2012, October 2012, and April 2013 are shown in Figure 144. The average CBR value 

of stabilized layer at October 2012 was larger than the April 2013 value. 

Date

Oct 2012 Feb 2013 Apr 2013

A
ve

ra
ge

 D
0 (

m
m

)

0

5

10

15

20



www.manaraa.com

 166 

 
Figure 144. 4th Street North seasonal DCP variations 

The variation of D0 with time is shown in Figure 145. It presents a decrease in D0 at 

February 2013 followed by an increase at April 2013. This represents the effects of freezing 

and thawing to the soil stiffness. 
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Figure 145. 4th Street North seasonal D0 variations 

5th Street South 

Biaxial geogrid was used to stabilize the 5th Street South. The DCP profiles of April 

2012, October 2012, and April 2013 are shown in Figure 146. The average CBR value of 

stabilized layer at October 2012 was larger than the April 2013 value. 
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Figure 146. 5th Street South seasonal DCP variations 

The variation of D0 with time is shown in Figure 147. It presents a decrease in D0 at 

February 2013 followed by an increase at April 2013. This represents the effects of freezing 

and thawing to the soil stiffness. 
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Figure 147. 5th Street South seasonal D0 variations 

5th Street North 

Triaxial geogrid was used to stabilize the 5th Street North. The DCP profiles of April 

2012, October 2012, and April 2013 are shown in Figure 148. The average CBR value of 

stabilized layer at October 2012 was larger than the April 2013 value. 
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Figure 148. 5th Street North seasonal DCP variations 

The variation of D0 with time is shown in Figure 149. It presents a decrease in D0 at 

February 2013 followed by an increase at April 2013. This represents the effects of freezing 

and thawing to the soil stiffness. 
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Figure 149. 5th Street North seasonal D0 variations 

6th Street South 

Recycled subbase was stabilized with 5% cement + 0.4% MF fiber at the 6th Street 

South. The DCP profiles of April 2012, October 2012, and April 2013 are shown in Figure 

150. DCP refusal was obtained for the stabilized layers at both October 2012 and April 2013. 

Date

Oct 2012 Feb 2013 Apr 2013

A
ve

ra
ge

 D
0 (

m
m

)

0

5

10

15

20



www.manaraa.com

 172 

 
Figure 150. 6th Street South seasonal DCP variations 

The variation of D0 with time is shown in Figure 151. It presents a decrease in D0 at 

February 2013 followed by an increase at April 2013. This represents the effects of freezing 

and thawing to the soil stiffness. 
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Figure 151. 6th Street South seasonal D0 variations 

6th Street North 

Recycled subbase was stabilized with 5% cement + 0.4% PP fiber at the 6th Street North. 

The DCP profiles of April 2012, October 2012, and April 2013 are shown in Figure 152. The 

average CBR value of stabilized layer at October 2012 was larger than the April 2013 value. 
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Figure 152. 6th Street North seasonal DCP variations 

The variation of D0 with time is shown in Figure 153. It presents a decrease in D0 at 

February 2013 followed by an increase at April 2013. This represents the effects of freezing 

and thawing to the soil stiffness. 
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Figure 153. 6th Street North seasonal D0 variations 

7th Street South 

Recycled subbase was stabilized with 5% cement at the 7th Street South. The DCP 

profiles of April 2012, October 2012, and April 2013 are shown in Figure 154. DCP refusal 

was obtained for the stabilized layers at both October 2012 and April 2013. 
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Figure 154. 7th Street South seasonal DCP variations 

The variation of D0 with time is shown in Figure 155. It presents a decrease in D0 at 

February 2013 followed by an increase at April 2013. This represents the effects of freezing 

and thawing to the soil stiffness. 
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Figure 155. 7th Street South seasonal D0 variations 

7th Street North 

Recycled subbase was stabilized with 5% cement at the 7th Street North. The DCP 

profiles of April 2012, October 2012, and April 2013 are shown in Figure 156. DCP refusal 

was obtained for the stabilized layers at both October 2012 and April 2013. 
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Figure 156. 7th Street North seasonal DCP variations 

The variation of D0 with time is shown in Figure 157. It presents a decrease in D0 at 

February 2013 followed by an increase at April 2013. This represents the effects of freezing 

and thawing to the soil stiffness. 
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Figure 157. 7th Street North seasonal D0 variations 

8th Street South 

The 6 inch to 18 inch layer of the 8th Street South was stabilized with compacted 

subgrade. The DCP profiles of April 2012, October 2012, and April 2013 are shown in 

Figure 158. The average CBR value of stabilized layer at October 2012 was larger than the 

April 2013 value. 
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Figure 158. 8th Street South seasonal DCP variations 

The variation of D0 with time is shown in Figure 159. It presents a decrease in D0 at 

February 2013 followed by an increase at April 2013. This represents the effects of freezing 

and thawing to the soil stiffness. 
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Figure 159. 8th Street South seasonal D0 variations 

8th Street North 

The 6 inch to 18 inch layer of the 8th Street North was stabilized with compacted 

subgrade. The DCP profiles of April 2012, October 2012, and April 2013 are shown in 

Figure 160. The average CBR value of stabilized layer at October 2012 was larger than the 

April 2013 value. 
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Figure 160. 8th Street North seasonal DCP variations 

The variation of D0 with time is shown in Figure 161. It presents a decrease in D0 at 

February 2013 followed by an increase at April 2013. This represents the effects of freezing 

and thawing to the soil stiffness. 
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Figure 161. 8th Street North seasonal D0 variations 

9th Street South 

The 6 inch to 12 inch layer of the 9th Street South was non-stabilized recycled subbase. 

The DCP profiles of April 2012, October 2012, and April 2013 are shown in Figure 162. 

DCP refusal was obtained for the recycled subbase layers at both October 2012. 
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Figure 162. 9th Street South seasonal DCP variations 

The variation of D0 with time is shown in Figure 163. It presents a decrease in D0 at 

February 2013 followed by an increase at April 2013. This represents the effects of freezing 

and thawing to the soil stiffness. 
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Figure 163. 9th Street South seasonal D0 variations 

9th Street North 

The 6 inch to 12 inch layer of the 9th Street North was non-stabilized recycled subbase. 

The DCP profiles of April 2012, October 2012, and April 2013 are shown in Figure 164. The 

average CBR value at October 2012 was larger than the April 2013 value. 
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Figure 164. 9th Street North seasonal DCP variations 

The variation of D0 with time is shown in Figure 165. It presents a decrease in D0 at 

February 2013 followed by an increase at April 2013. This represents the effects of freezing 

and thawing to the soil stiffness. 
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Figure 165. 9th Street North seasonal D0 variations 

10th Street South 

Natural subgrade is under the 6-in crushed limestone modified subbase layer at the 10th 

Street South. The DCP profiles of April 2012, October 2012, and April 2013 are shown in 

Figure 166. The average CBR value at October 2012 was larger than the April 2013 value. 
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Figure 166. 10th Street South seasonal DCP variations 

The variation of D0 with time is shown in Figure 167. It presents a decrease in D0 at 

February 2013 followed by an increase at April 2013. This represents the effects of freezing 

and thawing to the soil stiffness. 
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Figure 167. 10th Street South seasonal D0 variations 

10th Street North 

Compacted subgrade is under the 6-in crushed limestone modified subbase layer at 10th 

Street North. The DCP profiles of April 2012, October 2012, and April 2013 are shown in 

Figure 168. The average CBR value of stabilized layer at October 2012 was larger than the 

April 2013 value. 

Date

Oct 2012 Feb 2013 Apr 2013

A
ve

ra
ge

 D
0 (

m
m

)

0

5

10

15

20



www.manaraa.com

 190 

 
Figure 168. 10th Street North seasonal DCP variations 

The variation of D0 with time is shown in Figure 169. It presents a decrease in D0 at 

February 2013 followed by an increase at April 2013. This represents the effects of freezing 

and thawing to the soil stiffness. 
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Figure 169. 10th Street North seasonal D0 variations 

11th Street South 

The 6 inch to 18 inch layer of 11th Street south was subgrade stabilized with 20% Port 

Neal fly ash. The DCP profiles of April 2012, October 2012, and April 2013 are shown in 

Figure 170. The average CBR value of stabilized layer at October 2012 was larger than the 

April 2013 value. 
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Figure 170. 11th Street South seasonal DCP variations 

The variation of D0 with time is shown in Figure 171. It presents a decrease in D0 at 

February 2013 followed by an increase at April 2013. This represents the effects of freezing 

and thawing to the soil stiffness. 
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Figure 171. 11th Street South seasonal D0 variations 

11th Street North 

The 6 inch to 18 inch layer of 11th Street North was subgrade stabilized with 10% 

cement. The DCP profiles of April 2012, October 2012, and April 2013 are shown in Figure 

172. DCP refusal was obtained for the stabilized layers at October 2012. 
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Figure 172. 11th Street North seasonal DCP variations 

The variation of D0 with time is shown in Figure 173. It presents a decrease in D0 at 

February 2013 followed by an increase at April 2013. This represents the effects of freezing 

and thawing to the soil stiffness. 
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Figure 173. 11th Street North seasonal D0 variations 

12th Street South 

The 6 inch to 18 inch layer of 12th Street South was subgrade stabilized with 10% 

Muscatine and Port Neal fly ash. The DCP profiles of April 2012, October 2012, and April 

2013 are shown in Figure 174. The average CBR value of stabilized layer at October 2012 

was larger than the April 2013 value. 
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Figure 174. 12th Street South seasonal DCP variations 

The variation of D0 with time is shown in Figure 175. It presents a decrease in D0 at 

February 2013 followed by an increase at April 2013. This represents the effects of freezing 

and thawing to the soil stiffness. 
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Figure 175. 12th Street South seasonal D0 variations 

12th Street North 

The 6 inch to 18 inch layer of 12th Street North was subgrade stabilized with 15% Ames 

fly ash. The DCP profiles of April 2012, October 2012, and April 2013 are shown in Figure 

176. The average CBR value of stabilized layer at October 2012 was larger than the April 

2013 value. 
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Figure 176. 12th Street North seasonal DCP variations 

The variation of D0 with time is shown in Figure 177. It presents a decrease in D0 at 

February 2013 followed by an increase at April 2013. This represents the effects of freezing 

and thawing to the soil stiffness. 
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Figure 177. 12th Street North seasonal D0 variations 
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Summary of in situ tests 

The DCP tests were performed at all the 24 segments. The test results based on CBR 

values were determined to evaluate the soil stiffness. According to the results, cement 

stabilized recycled subbase and cement + fibers stabilized recycled subbase turned out to be 

more effective for controlling the freeze-thaw influence to soil stiffness. This point can also 

be correlated to the laboratory frost-heave and thaw-weakening tests. The stabilization effects 

on improving freeze-thaw performance of geomaterials were similar between laboratory tests 

and in situ tests. The average CBRs of each segment at October 2012 and April 2013 and the 

reduction factors for CBRs are summarized Table 65 and Table 66. 

Table 65. Summary of CBRs and reduction factors of subbase layers from DCP tests 

Time October 2012 April 2013 Reduction factor 
Segment South North South North South North 

1st St. 122.2 134.7 60.5 65.2 0.49 0.48 
2nd St. 89.3 106.8 43.9 29.9 0.49 0.28 
3rd St. 83.3 18.0 20.1 18.2 0.24 1.01 
4th St. 88.5 120.6 46.0 33.0 0.52 0.27 
5th St. 148.4 234.3 43.8 36.9 0.30 0.16 
6th St. 252.3 224.2 89.9 67.7 0.36 0.30 
7th St. 145.1 232.3 29.2 31.7 0.20 0.14 
8th St. 83.9 108.0 29.6 13.0 0.35 0.12 
9th St. 336.5 174.2 66.9 24.8 0.20 0.14 
10th St. 122.2 112.2 26.9 25.6 0.22 0.23 
11th St. 120.5 510.4 31.1 19.2 0.26 0.04 
12th St. 185.9 203.1 18.9 14.5 0.10 0.07 

Table 66. Summary of CBRs and reduction factors of subgrade layers from DCP tests 

Time October 2012 April 2013 Reduction factor 
Segment South North South North South North 

1st St. 12.0 6.5 9.9 5.2 0.83 0.80 
2nd St. 15.6 16.2 7.6 5.5 0.49 0.34 
3rd St. 8.3 1.7 1.9 4.8 0.23 2.82 
4th St. 20.9 11.1 6.6 3.3 0.31 0.30 
5th St. 11.1 12.6 10.1 2.9 0.91 0.23 
6th St. - 318.1 109.9 127.8 - 0.40 
7th St. - - 149.1 199.4 - - 
8th St. 83.9 16.6 3.7 4.3 0.04 0.26 
9th St. - 118.0 38.6 21.7 - 0.18 
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Table 66. Summary of CBRs and reduction factors of subgrade layers from DCP 

tests (continued) 

Time October 2012 April 2013 Reduction factor 
Segment South North South North South North 
10th St. 11.3 5.7 2.5 1.5 0.22 0.26 
11th St. 15.4 - 9.2 79.5 0.60 - 
12th St. 21.7 47.5 13.9 14.2 0.64 0.30 

The CBR values from laboratory and field were compared. Figure 178 shows a 

relationship between the laboratory and field CBR values. This result cannot exactly reflect 

the relationship between the two groups of CBR values. The laboratory CBR was not equal 

to the field CBR of the same material. The possible reasons caused the differences were: field 

construction conditions; different numbers of freeze-thaw cycles; different numbers of 

sample data.  

 
Figure 178. CBR values from laboratory and field tests 
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The CBR reduction factors based on laboratory and in-situ tests were compared. Table 67 

summarizes the reduction factors from both laboratory and field. The factors that are less 

than 1.0 were plotted in Figure 179. 

Table 67. CBR reduction factors for the stabilization methods both used in laboratory 

and field. 

Stabilization method 
Lab CBR 
reduction 

factor  

Field CBR 
reduction 

factor 
non-stabilized subgrade 0.21 0.22 

15% Ames fly ash subgrade 0.27 0.30 
10% Port Neal fly ash subgrade 0.75 0.64 
20% Port Neal fly ash subgrade 0.62 0.60 

10% cement subgrade Refusal Refusal 
non-stabilized subbase 1.91 0.22 
5.0% cement subbase 0.27 0.17 

0.4% PP + 3.75% cement subbase 0.51 0.33 
0.4% MF+ 3.75% cement subbase 1.42 0.36 
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Figure 179. Field and Laboratory CBR reduction factors plots 

The FWD measurement, D0, resulted in the similar trend for seasonal variations. The 

relationship between after-thawing D0 and before-freezing D0 cannot be addressed from the 

comparison plots as in Figure 180. 
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Figure 180. Deflections of after-thawing and before-freezing 

The seasonal D0 variations of all the 24 segments are presented in Figure 181. The 

during-freezing condition led to stiffer pavement than both of the before-freezing and after-

thawing conditions. An obvious increase in D0 was obtained from the April 2013 FWD 

results, which indicates the pavement was softer at that time than at both Oct 2012 and Feb 

2013. 

Do Oct 2013 (mm)

0 2 4 6 8 10

D
o 

A
pr

il 
20

13
 (m

m
) 

0

2

4

6

8

10

12

14

16

18

20



www.manaraa.com

 205 

 
Figure 181. Summary of D0 seasonal variations 

Besides the deflection at the center of the loading plate, the deflections which are 12, 18, 

24, 36, 48, and 60 inches behind the center of the loading plate were also recorded for each 

test. By plotting the deflections at these points, a deflection basin can be drawn (Figure 182) 

to observe the subsequent pavement response. From this figure, the load transfer efficiency 

of a pavement can also be determined. Figure 182 presents three deflection basins based on 

three seasonal periods at the same test location. The composite pavement after-thawing was 

softer than before and during freezing, and during-freezing pavement performed stiffer than 

the other two seasonal conditions. The during-freezing pavement also transferred the load 

more effectively than before-freezing and after-thawing conditions. 
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Figure 182. Defection basin at Station 350.0 ft. on the 12th Street north 
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CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 

This chapter presents an overview of the technical merit and scientific value gained from 

the study and an overview of the lessons learned. The conclusions are presented in two 

sections, conclusions based on frost-heave and thaw-weakening laboratory testing and those 

based on in situ testing, followed by recommendations for future research and practice. 

The specific objectives of the study were to compare the stabilization effects of various 

stabilizers for geomaterials based on frost susceptibility and to associate laboratory results 

with in situ freeze-thaw performance. Frost-heave and thaw-weakening laboratory tests were 

conducted according to ASTM D5918 to determine freeze-thaw performance of sandy lean 

clay (CL) subgrade and silty sand with gravel (SM) subbase. Freeze-thaw performance of 

pavement systems with the same subbase and subgrade stabilization methods was determined 

through DCP and FWD testing. The test results from laboratory and in situ were evaluated 

and analyzed. 

CONCLUSIONS  

The CL had 11.43 mm/day frost heave rate and 1.4% CBR values that were high to very 

high frost susceptibility. Samples stabilized with different concentrations of fly ash and 

cement were tested. Of the four fly ash concentrations tested, 15% was the optimal fly ash 

content (as compared with 5%, 10%, and 20% fly ash) for controlling freeze-thaw 

performance. Of the three types of fly ash tested, the fly ash with the highest CaO contents 

was most effective in improving frost susceptibility. However, overall fly ash stabilization 

was not an effective method for decreasing the frost heave rates of the CL soil. Cement 

controlled both the heave rate and the CBR values change of this kind of soil effectively 

during freeze-thaw cycles. 

The test results showed that the SM soil had 15.63 mm/day frost heave rate and 8.8% 

CBR values, and the frost susceptibility level of this soil ranges from medium to high. Fibers 

alone did not effectively decrease the frost heave rates or improve changes in soil stiffness. 

This finding differs from Hoover’s (1982) conclusions but matched the conclusions reported 

in Tang et al. (2007). The proper amount of cement also controlled both the heave rate and 

the CBR values change of this SM soil. Regardless of the cost of materials and installations 
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and environmental friendliness, cement + fibers resulted in the optimal stabilization effects 

on improving the frost susceptibility of this kind of soil. 

Compaction delay is an important factor influencing the stabilization effect. The longer 

compaction delay increased the frost heave rates and the stiffness changes of stabilized soils. 

Increasing the cure period from 7 days to 180 days improved the frost susceptibility of 15% 

fly ash stabilized loess samples. 

The D0 values that were directly measured from FWD tests were used to determine the 

stiffness of pavement systems. The test results showed that the values were lower under 

after-thawing conditions and were larger under frozen conditions. The D0 seasonal variations 

trends were similar for the pavement systems with all kinds of stabilization methods and non-

stabilized pavement systems. 

The CBR values of each layer of pavement systems were calculated from the test results 

of DCP tests. Cement stabilized recycled subbase (SM) and cement + fibers stabilized 

recycled subbase turned out to be more effective for controlling the freeze-thaw influence to 

stiffness. Cement also resulted in higher CBR values than other stabilization methods for 

subgrade (CL) materials. 

RECOMMENDATIONS FOR FUTURE RESEARCH 

Performing this study raised several areas for future research: 

• Perform frost-heave and thaw-weakening tests on fly ash + cement stabilized 

geomaterials to determine if cement can improve the fly ash stabilization effect on 

freeze-thaw performance. 

• Decrease the cement content from 3.75% in the cement +fibers stabilized 

geomaterials to determine the optimum cement content. 

• Conduct resilient modulus tests on the post freeze-thaw test samples to evaluate the 

soil stiffness changes under cyclic loading. 

• Determine the effectiveness of geosynthetics (e.g., geocell, geotextiles, and geogrid) 

for improving the frost susceptibility of geomaterials. 

• Conduct a study on the water movement in soil with different stabilization methods 

during freeze-thaw tests. 
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• Perform frost-heave and thaw-weakening tests on more geomaterials to evaluate the 

frost susceptibilities of other kinds of soils. 

Results from this study and future research suggested here could ultimately be used to 

form a reference tool pavement designers could consult to effectively address frost 

susceptibility of pavement foundation geomaterials. 

RECOMMENDATIONS FOR FUTURE PRACTICE 

Results of this study suggest two related recommendations for future practice. First, in 

addition to accounting for major properties (e.g., shear strength, resilient modulus, and 

durability), pavement designers in cold regions should account for frost susceptibility as a 

factor that influences pavement serviceability, durability, and safety. Second, once the frost 

susceptibility of the pavement foundation materials is known, the pavement designers need to 

balance the initial cost of stabilizers that reduce frost susceptibility with the long-term costs 

associated with freeze-thaw damage. 
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APPENDIX A. STRESS PENETRATION CURVES FROM AFTER FREEZE-THAW 
CBR TESTS 

 
Figure 183. Non-stabilized recycled subbase stress penetration curves 

 
Figure 184. Non-stabilized subgrade stress penetration curves 
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Figure 185. 5% Ames FA stabilized subgrade stress penetration curves 

 
Figure 186. 10% Ames FA stabilized subgrade stress penetration curves 
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Figure 187. 15% Ames FA stabilized subgrade stress penetration curves 

 
Figure 188. 20% Ames FA stabilized subgrade stress penetration curves 
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Figure 189. 5% Muscatine FA stabilized subgrade stress penetration curves 

 
Figure 190. 10% Muscatine FA stabilized subgrade stress penetration curves 
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Figure 191. 5% Port Neal FA stabilized subgrade stress penetration curves 

 
Figure 192. 10% Port Neal FA stabilized subgrade stress penetration curves 
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Figure 193. 15% Port Neal FA stabilized subgrade stress penetration curves 

 
Figure 194. 20% Port Neal FA stabilized subgrade stress penetration curves 
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Figure 195. Cement stabilized subgrade stress penetration curves (sample 1: 5% 

cement; sample 2: 10% cement) 

 
Figure 196. 2.5% cement stabilized recycled subbase stress penetration curves 
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Figure 197. 3.75% cement stabilized recycled subbase stress penetration curves 

 
Figure 198. 5% cement stabilized recycled subbase stress penetration curves 

Deformation (in.)

0.0 0.1 0.2 0.3 0.4 0.5

S
tre

ss
 (p

si
)

0

200

400

600

800

1000

Sample 1
Sample 2

Deformation (in.)

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22

S
tre

ss
 (p

si
)

0

500

1000

1500

2000

2500

3000

Sample 1
Sample 2



www.manaraa.com

 223 

 
Figure 199. 7.5% cement stabilized recycled subbase stress penetration curves 

 
Figure 200. 0.2% PP fiber stabilized recycled subbase stress penetration curves 
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Figure 201. 0.4% PP fiber stabilized recycled subbase stress penetration curves 

 
Figure 202. 0.6% PP fiber stabilized recycled subbase stress penetration curves 
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Figure 203. 0.2% MF fiber stabilized recycled subbase stress penetration curves 

 
Figure 204. 0.4% MF fiber stabilized recycled subbase stress penetration curves 

Deformation (in.)

0.0 0.1 0.2 0.3 0.4 0.5

S
tre

ss
 (p

si
)

0

100

200

300

400

500

Sample 1
Sample 2

Deformation (in.)

0.0 0.1 0.2 0.3 0.4 0.5

S
tre

ss
 (p

si
)

0

100

200

300

400

500

600

Sample 1
Sample 2



www.manaraa.com

 226 

 
Figure 205. 0.6% MF fiber stabilized recycled subbase stress penetration curves 

 
Figure 206. 3.75% cement + 0.2% PP fiber stabilized recycled subbase stress 

penetration curves (sample 1: no compaction delay; sample 2: 12-hr compaction delay) 
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Figure 207. 3.75% cement + 0.4% PP fiber stabilized recycled subbase stress 

penetration curves (no compaction delay) 

 
Figure 208. 3.75% cement + 0.4% PP fiber stabilized recycled subbase stress 

penetration curves (12-hr compaction delay) 
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Figure 209. 3.75% cement + 0.6% PP fiber stabilized recycled subbase stress 

penetration curve 

 
Figure 210. 3.75% cement + 0.2% MF fiber stabilized recycled subbase stress 

penetration curve 
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Figure 211. 3.75% cement + 0.4% MF fiber stabilized recycled subbase stress 

penetration curve 

 
Figure 212. 3.75% cement + 0.6% MF fiber stabilized recycled subbase stress 

penetration curve 
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Figure 213. 90-day cured 15% FA stabilized western Iowa loess stress penetration 

curves 

 
Figure 214. 180-day cured 15% FA stabilized western Iowa loess stress penetration 

curves 
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APPENDIX B. STRESS PENETRATION CURVES FROM BEFORE FREEZE-
THAW CBR TESTS 

 
Figure 215. Non-stabilized recycled subbase stress penetration curve 

 
Figure 216. Non-stabilized subgrade stress penetration curve 
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Figure 217. 5% Ames FA stabilized subgrade stress penetration curve 

 
Figure 218. 10% Ames FA stabilized subgrade stress penetration curve 
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Figure 219. 15% Ames FA stabilized subgrade stress penetration curve 

 
Figure 220. 20% Ames FA stabilized subgrade stress penetration curve 
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Figure 221. 10% Port Neal FA stabilized subgrade stress penetration curve 

 
Figure 222. 15% Port Neal FA stabilized subgrade stress penetration curve 
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Figure 223. 5% cement stabilized subgrade stress penetration curve 

 
Figure 224. 10% cement stabilized subgrade stress penetration curve 
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Figure 225. 2.5% cement stabilized recycled subbase stress penetration curve 

 
Figure 226. 3.75% cement stabilized recycled subbase stress penetration curve 

Deformation (in.)

0.0 0.1 0.2 0.3 0.4 0.5

S
tre

ss
 (p

si
)

0

500

1000

1500

2000

2500

3000

Deformation (in.)

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22

S
tre

ss
 (p

si
)

200

400

600

800

1000

1200

1400

1600

1800

2000



www.manaraa.com

 237 

 
Figure 227. 5% cement stabilized recycled subbase stress penetration curve 

 
Figure 228. 7.5% cement stabilized recycled subbase stress penetration curve 
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Figure 229. 0.2% PP fiber stabilized recycled subbase stress penetration curve 

 
Figure 230. 0.4% PP fiber stabilized recycled subbase stress penetration curve 
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Figure 231. 0.6% PP fiber stabilized recycled subbase stress penetration curve 

 
Figure 232. 0.2% MF fiber stabilized recycled subbase stress penetration curve 
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Figure 233. 0.4% MF fiber stabilized recycled subbase stress penetration curve 

 
Figure 234. 0.6% MF fiber stabilized recycled subbase stress penetration curve 
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Figure 235. 3.75% cement + 0.2% PP fiber stabilized recycled subbase stress 

penetration curve 

 
Figure 236. 3.75% cement + 0.4% PP fiber stabilized recycled subbase stress 

penetration curve 
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Figure 237. 3.75% cement + 0.2% MF fiber stabilized recycled subbase stress 

penetration curve 

 
Figure 238. 3.75% cement + 0.4% MF fiber stabilized recycled subbase stress 

penetration curve 
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Figure 239. 3.75% cement + 0.6% MF fiber stabilized recycled subbase stress 

penetration curve 
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APPENDIX C. FROST-HEAVE AND THAW-WEAKENING TEST PROCEDURAL 
MANUAL 

Material Preparation 

1. Based on moisture-density tests, determine the optimum moisture content. Add 
sufficient water to the samples to reach the optimum moisture content. 
2. Cohesive materials require approximately 6000 g per sample and cohesionless 

materials require approximately 7000 g per sample. 
3. Separate into 4 samples and allow the samples to equilibrate overnight.  
4. Take moisture content samples the day before compaction to verify accuracy. 

Sample Preparation 

5. Measure the mass of the top and bottom acrylic disks, the mass can be used for all 
four samples. 

6. Measure the mass of the rings, membrane, and disks that will be used for each of 
the 4 samples. 

 
7. Wrap the membrane around bottom acrylic disk and place in the bottom of the 

sample mold with one half of the side walls removed.  



www.manaraa.com

 245 

 
8. Place the 6 acrylic rings on the bottom acrylic disk, with the membrane inside of 

the rings. Align the thermocouple holes and notches vertically. The bottom ring 
should have a notch pointing down and the top ring should have a notch pointing 
up.  

 
9. Place the other half of the side wall on the mold. Place 4 pipe clamps around the 

circumference of the side walls and tighten.  
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10. Place the collar on the mold and tighten the wing nuts 

 
11. Stretch the membrane around the collar. 



www.manaraa.com

 247 

 
12. Compact material in 5 layers by applying 40 blows from a standard proctor 

hammer to each layer. Each layer should be nearly 1.2 in. thick. 
13. Remove the membrane from the collar and remove the pipe clamps and side 

walls. 

 
14. Fold back the membrane and trim the sample.  
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15. Place the top acrylic disk on the sample and measure the mass of the sample, 

rings, membrane, and disks. 
16. Take a moisture content sample of each sample from the material that is 

remaining.  

Sample Setup and Saturation 

17. Place the porous stone and filter paper on the specimen base. 

 
18. Remove the top and bottom acrylic disks from the sample and center the sample 

on the specimen base. For convenience, point the vertically aligned the 
thermocouple holes and notches toward the tubing coming from the water supply.   
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19. Roll the membrane around the specimen base and slide an O-ring over the 
membrane onto the specimen base. The O-ring should fit into the grooves in the 
specimen base. Place a pipe clamp around the O-ring and tighten. 

 
20. Roll the membrane around the top of the sample and place a sheet of plastic wrap 

over the sample, secure with a rubber band. Place the surcharge weight onto the 
samples.  

21. Connect the specimen base to the water supply. 
22. Flush the air out of the water lines and clamp the tubing shut. Fill the water 

supply and seal it. It may be easier to seal the water supply if after flushing the 
lines; the line is not completely closed. By allowing the water to flow while 
sealing the water supply, the water level should move to the bottom of the glass 
bubble tube. Clamp the tubing shut. 
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23. Set the water head level to 1 in. by placing the bottom of the glass bubble tube 1 

in. above the bottom of the sample. Mark the initial water level and measure the 
change in water level at the end of the saturation period. 

24. Raise the bubble tube at a rate of 1 in. per hour for 8 hr, then set at 6 in. for 16 hrs. 

Setup in Freezer 

25. Disconnect the samples from the water supplies and remove the surcharge 
weights. 

26. Puncture the membrane at the locations where the thermocouple will be placed. 
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27. Place the samples in the freezer on the bottom heat exchangers. Place the samples 

in the freeze according to the following arrangement. 

 
 

28. Place the top heat exchanger on the sample, seal with an O-ring, and reapply the 
surcharge weights. 

1 

2 

3 

4 

4 

3 

2 

1 
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29. Place the water supplies in the freezer and re-connect to the specimen bases.  
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30. Purge the air from the water lines by allowing water to flow through the system. 

Set the head level 0.5 in. above the sample bottom, which is the same as setting 
the top of the bubble tube approximately 4.5 in. above the stopper. Mark the 
initial water level and measure the change in water level at the end of the testing 
period. 

31. Connect the pressure transducer wires and wrap in electrical tape. 
32. Dip the thermocouple tips in silicon adhesive and insert into sample. The numbers 

increase going down the sample (1 is on top and 8 is on bottom). 

 
 

1 

2 

3 

4 

5 

6 

7 

8 
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33. Turn on water baths and set the target temperature to 3°C. Turn on the freezer and 

place thermocouple in freezer. The following programs should be input into the 
top and bottom water baths: 

Top Heat Exchanger 
Program Step Set Point (°C) Duration 

1 3 960 min 
2 3 480 min 
3 3 1 s 
4 -3 480 min 
5 -3 1 s 
6 -12 960 min 
7 -12 1 s 
8 12 960 min 
9 12 1 s 
10 3 480 min 
11 3 1 s 
12 -3 480 min 
13 -3 1 s 
14 -12 960 min 
15 -12 1 s 
16 12 960 min 
17 12 1 s 
18 3 480 min 
19 3 1 s 
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Bottom Heat Exchanger 
Program Step Set Point (°C) Duration 

1 3 960 min 
2 3 480 min 
3 3 480 min 
4 3 1 s 
5 0 960 min 
6 0 1 s 
7 3 960 min 
8 3 960 min 
9 3 1 s 
10 0 960 min 
11 0 1 s 
12 3 960 min 
13 3 480 min 
14 3 1 s 

 

34. Place the displacement sensors on top of the sample. Place the sensors high 
enough that the expected range of heave can be measured. The light on the top of 
the laser gives an indication of where the laser is in the measuring range. The light 
on top of the lasers mean the following: 

• Red means the laser is out of the measurement range 
• Green means the laser is in the measurement range 
• Orange means the laser is at the midpoint of the measurement range 
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35. Observe the readings from the pressure transducers, thermocouples, and 

displacement transducers to make sure they are reasonable. Double check the 
water supply connections, the water supply valve is open the thermocouple 
placement,  

36. Fill with granular insulation. 

 
37. Place the thermocouple measuring the air temperature and the thermocouple for 

the freezer temperature controller into the freezer. Make sure neither 
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thermocouple is in contact with anything that may give a false air temperature 
reading. 

38. Restart the data acquisition system and start the water bath programs. 

Removal from Freezer and CBR 

39. Remove the displacement sensors, granular insulation, and thermocouples. 
40. Disconnect the samples from the water supplies and remove from the freezer.  
41. Remove the pipe clamp from the samples and both O-rings and measure the mass 

of the sample, rings, and membrane. 
42. Place 4 pipe clamps around the top 4 acrylic rings and place the CBR surcharge 

weights on the sample. Perform the CBR test. 

 
43. Take moisture content samples from the sample on 1 in. centers in the vertical 

direction to develop a moisture content profile.  
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